
 

 
Review of ReseaRch 

ISSN: 2249-894X 
Impact Factor : 5.7631(UIF) 

Volume - 13 | Issue - 9 | June - 2024  
 

________________________________________________________________________________________ 
Journal for all Subjects : www.lbp.world 

1 
 
 

DIGITAL CONTRACTIVE TYPE MAPPINGS IN DIGITAL METRIC SPACES 
 
 

Dhiraj Rajesh Baghel1 and Dr. Dubey R.P. 2 
1Research Scholar Department of Mathematics,  

Dr. C.V. Raman University. 
2Vice-Chancellor, Department of Mathematics,  

Dr. C.V. Raman University. 
 
 

ABSTRACT: 
 In the framework of digital metric spaces, the study 
present digital β and ψ contractive mappings in this paper. 
Finally, it goes over a few examples to show our findings. A 
fascinating topic for dynamic study in non-linear analysis is fixed 
point theory. The fact that a unit closed ball in R^2 has a fixed 
point was demonstrated by Brouwer in 1912. In 1922, Banach 
presented the most noteworthy outcome in the fixed-point theory. 
He demonstrated that there is a distinct fixed point for every 
contraction in a complete metric space. The Banach fixed point 
theorem was further developed in a variety of ways by other 
writers. An author recently presented the concept of σ-ψ contractive mappings and demonstrated the 
associated fixed-point theorems. 
 
KEYWORDS: digital metric spaces, contractive mapping, demonstrated the associated fixed-point 
theorems. 
 
INTRODUCTION 
 Fixed point theory is a beautiful subject for dynamic research in non-linear analysis. In 1912, 
Brouwer proved a result that a unit closed ball in ℝ௡ has a fixed point. The most remarkable result in 
the fixed point theory was given by Banach in 1922. He proved that each contraction in a complete 
metric space has a unique fixed point. Later on, many authors generalized the Banach fixed point 
theorem in various ways. Recently, Samet et al. introduced the notion of ߙ −߰ contractive mappings 
and proved the related fixed point theorems. 
 Digital topology is a developing area based on general topology and functional analysis which 
studies features of 2D and 3D digital images. Rosenfield was the first to consider digital topology as the 
tool to study digital images. Kong, then introduced the digital fundamental group of a discrete object. 
The digital versions of the topological concepts were given by Boxer, who later studied digital 
continuous functions. Later, he gave results of digital homology groups of 2D digital images in Ege and 
Karaca give relative and reduced Lefschetz fixed point theorem for digital images. They also calculate 
degree of antipodal map for the sphere like digital images using fixed point properties. Ege and Karaca 
then defined a digital metric space and proved the famous Banach Contraction Principle for digital 
images. 
 In this paper we generalize the concept of ߙ −߰-contractive mappings in the setting of digital 
metric space, as ݀ − ߚ −߰-contractive mappings. 
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Preliminaries 
Definition 1.1: Let Ψ be a family of functions ߰: [0,∞) → [0,∞) satisfying the following conditions: 
(i) ߰ is nondecreasing; 
(ii) there exist ݇଴ ∈ ℕ and ܽ ∈ (0,1) and a convergent series of nonnegative terms ∑  ஶ

௞ୀଵ ௞ݒ  such that 
߰௞ାଵ(ݐ) ≤ ܽ߰௞(ݐ) + ௞ݒ  

For ݇ ≥ ݇଴ and any ݐ ∈ ℝା. 
 
Lemma 1.2: If ߰ ∈ Ψ, then the following hold: 
(i) (߰௡(ݐ))௡∈ℕ converges to 0 as ݊ → ∞ for all ݐ ∈ ℝା; 
(ii) ߰(ݐ) < ݐ for any ݐ ∈ (0,∞); 
(iii)  ߰ is continuous at 0 ; 
(iv) the series ∑  ஶ

௡ୀଵ ߰௞(ݐ) converges for any ݐ ∈ ℝା. 
 Recently, Samet et al. introduced the following concepts. 
 
Definition 1.3: Let ܶ:ܺ → ܺ and ߙ: ܺ × ܺ → [0,∞). we say that ܶ is ߙ admissible if for all ݔ, ݕ ∈ ܺ, we 
have 

,ݔ)ߙ (ݕ ≥ 1 ⇒ ,ݔܶ)ߙ (ݕܶ ≥ 1 
Definition 1.4: Let ( ܺ, ݀ ) be a metric space and let ܶ: ܺ → ܺ be a given mapping. We say that ܶ is an 
ߙ − ߰-contractive mapping if there exist two functions ߙ: ܺ × ܺ → [0,∞) and ߰ ∈ Ψ such that 

,ݔ)ߙ ,ݔܶ)݀(ݕ (ݕܶ ≤ ,ݔ)݀)߰  ((ݕ
for all ݔ, ݕ ∈ ܺ. 
 Clearly, any contractive mapping, that is, a mapping satisfying Banach contraction, is an ߙ − ߰-
contractive mapping with ݔ)ߙ, (ݕ = 1 for all ݔ, ݕ ∈ ܺ and ߰(ݐ) = ݐ for all ,ݐ݇ > 0 and some ݇ ∈ [0,1). 
 Let ܺ be a subset of ℤ௡ for a positive integer ݊ where ℤ௡ is the set of lattice points in the ݊ - 
dimensional Euclidean space and ߩ represent an adjacency relation for the members of ܺ. A digital 
image consists of ( ܺ,  .( ߩ
 
Definition 1.5: Let ݈, ݊ be positive integers, 1 ≤ ݈ ≤ ݊ and two distinct points 

ܽ = (ܽଵ, ܽଶ, … , ܽ௡), ܾ = ( ଵܾ , ܾଶ, … , ܾ௡) ∈ ℤ௡ 
ܽ and ܾ are ݇௟ - adjacent if there are at most ݈ indices ݅ such that |ܽ௜ − ܾ௜| = 1 and for all other indices ݆ 
such that ห ௝ܽ − ௝ܾห ≠ 1, ௝ܽ = ௝ܾ. 
There are some statements which can be obtained from definition 2.1: 
 ܽ and ܾ are 2- adjacent if |ܽ − ܾ| = 1. 
 ܽ and ܾ in ℤଶ are 8 - adjacent if they are distinct and differ by at most 1 in each coordinate. 
 ܽ and ܾ in ℤଷ are 26- adjacent if they are distinct and differ at most 1 in each coordinate. 
 ܽ and ܾ in ℤଷ are 18 - adjacent if are 26 - adjacent and differ by at most two coordinates. 
 ܽ and ܾ are 6-adjacent if they are 18- adjacent and differ in exactly one coordinate. 
 A ߩ-neighbour [9] of ܽ ∈ ℤ௡  is a point of ℤ௡  that is ߩ-adjacent to ܽ where ߩ ∈ {2,4,8,6,18,26} and 
݊ ∈ 1,2,3. The set 

Nఘ(ܽ) = {ܾ ∣ ܾ is ߩ −  adjacent to ܽ} 
is called the ߩ-neighbourhood of ܽ . A digital interval [9] is defined by 

,݌] ℤ[ݍ = ݖ} ∈ ℤ ∣ ݌ ≤ ݖ ≤  {ݍ
where, ݌, ݍ ∈ ℤ and ݌ <  .ݍ
 A digital image ܺ ⊂ ℤ௡  is ߩ - connected [10] if and only if for every pair of different points 
,ݑ ݒ ∈ ܺ, there is a set {ݑ଴, ,ଵݑ … , ݑ ௥} of points of digital image ܺ such thatݑ = ,଴ݑ ݒ =  ௜ andݑ ௥ andݑ
݅ neighbours where - ߩ ௜ାଵ areݑ = 0,1, … , ݎ − 1. 
 
Definition 1.6: Let (ܺ, (଴ߩ ⊂ ℤ௡బ , (ܻ, (ଵߩ ⊂ ℤ௡భ  be digital images and ܶ: ܺ → ܻ be a function. 
 ܶ is said to be (ߩ଴, ,ܺ of ܧ ଴ - connected subsetߩ ଵ) – continuous, if for allߩ  ଵ - connectedߩ is a (ܧ)݂

subset of ܻ. 
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 For all ߩ଴ - adjacent points {ݑ଴, (଴ݑ)ܶ ଵ} of ܺ, eitherݑ =  ଵ-adjacentߩ are a (ଵݑ)ܶ and (଴ݑ)ܶ or (ଵݑ)ܶ
in ܻ  if and only if ܶ is (ߩ଴,  .ଵ)-continuous [9]ߩ

 If ݂ is ( ߩ଴, ,ଵߩ ) ଵ )- continuous, bijective and ܶିଵ isߩ ,଴ߩ ) ଴ )- continuous, then ܶ is calledߩ  -( ଵߩ
isomorphism [11]and denoted by ܺ ≅  (ఘబ ,ఘభ)ܻ. 

 A ( 2,  in a digital image ܺ if ݒ to ݑ path [9] from - ߩ continuous function ܶ, is called a digital -( ߩ
ܶ: [0,݉]ℤ → ܺ such that ܶ(0) = (݉)ܶ and ݑ = ݉ curve of - ߩ A simple closed .ݒ ≥ 4 points [12] in a 
digital image ܺ is a sequence {ܶ(0), ܶ(1), … , ܶ(݉ − 1)} of images of the ߩ - path ܶ: [0,݉ − 1]ℤ → ܺ such 
that ܶ (݅) and ܶ(݆) are ߩ - adjacent if and only if ݆ = ݅ ± mod݉. 
 
Definition 1.7: A sequence {ݔ௡} of points of a digital metric space ( ܺ, ݀,  is a Cauchy sequence if for ( ߩ
all ∈> 0, there exists ߜ ∈ ℕ such that for all ݊ , ݉ >  then ,ߜ

௡ݔ)݀ , (௠ݔ < ߳ 
Definition 1.8: A sequence {ݔ௡} of points of a digital metric space ( ܺ, ݀, ݌ converges to a limit ( ߩ ∈ ܺ if 
for all ∈> 0, there exists ߙ ∈ ℕ such that for all ݊ >  then ,ߜ

,௡ݔ)݀ (݌ < ߳ 
Definition 1.9: A digital metric space ( ܺ, ݀,  of {௡ݔ} is a digital metric space if any Cauchy sequence ( ߩ
points of ( ܺ, ݀, ,ܺ ) of ݌ converges to a point ( ߩ ݀,  .( ߩ
 
Definition 1.10: Let, ( ܺ, ݀, :ܶ be any digital metric space and ( ߩ (ܺ, ݀, (ߩ → (ܺ, ݀,  be a self digital (ߩ
map. If there exists ߙ ∈ (0,1) such that for all ݔ, ݕ ∈ ܺ, 

,(ݔ)݂)݀ ((ݕ)݂ ≤ ,ݔ)݀ߙ  ,(ݕ
then ܶ is called a digital contraction map. 
 
Proposition 1.11: Every digital contraction map is digitally continuous. 
 
Theorem 1.12: (Banach Contraction principle) Let ( ܺ, ݀,  be a complete metric space which has a ( ߩ
usual Euclidean metric in ℤ௡. Let, ܶ: ܺ → ܺ be a digital contraction map. Then ܶ has a unique fixed 
point, i.e. there exists a unique ݌ ∈ ܺ such that ݂(݌) =  .݌
 
Main Results 
 We introduce the concept of digital- ߚ −߰-contractive mapping as follows: 
 
Definition 1.1: Let ( ܺ, ݀, :ܶ be a digital metric space and let ( ߩ ܺ → ܺ be a given mapping. We say that 
ܶ is a digital- ߚ −߰-contractive mapping if there exist two functions ߚ: ܺ × ܺ → [0,∞) and ߰ ∈ Ψ such 
that for all ݔ, ݕ ∈ ܺ, we have 

,ݔ)ߚ ,ݔܶ)݀(ݕ (ݕܶ ≤ ߰൫݀(ݔ,  ൯  (1)(ݕ
Definition 1.2: Let ܶ:ܺ → ܺ and ߚ:ܺ × ܺ → [0,∞). We say that ܶ is a ߚ admissible if for all ݔ, ݕ ∈ ܺ, we 
have 

,ݔ)ߚ (ݕ ≥ 1 ⇒ ,ݔܶ)ߚ (ݕܶ ≥ 1 
Theorem 1.3: Let ( ܺ, ݀, ܺ:ܶ be a complete digital metric space and let ( ߩ → ܺ is a digital- ߚ − ߰-
contractive mapping and satisfies the following conditions: 

(i) ܶ is a ߚ-admissible; 
(ii) there exist ݔ଴ ∈ ܺ such that ݔ)ߚ଴, (଴ݔܶ ≥ 1; 
(iii) ܶ  is digital continuous. 

Then there exists ݑ ∈ ܺ such that ܶ ݑ =  .ݑ
Proof: Let ݔ଴ ∈ ܺ such that ݔ)ߚ଴, (଴ݔܶ ≥ 1 (such a point exist from the condition (ii)). Define the 
sequence {ݔ௡} in ܺ by ݔ௡ାଵ = ݊ ௡ for allݔܶ ≥ 0. If ݔ௡଴ = ݑ ௡௢ାଵ for some ݊଴, thenݔ = ௡଴ݔ  is a fixed point 
of ܶ. So, we can assume that ݔ௡ ≠  admissible, we have-ߚ ௡ାଵ for all ݊. Since ܶ isݔ

,଴ݔ)ߚ (ଵݔ = ,଴ݔ)ߚ (଴ݔܶ ≥ 1 ⇒ ,଴ݔܶ)ߚ (ଵݔܶ = ,ଵݔ)ߚ (ଶݔ ≥ 1. 
Inductively, we have 
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௡ݔ)ߚ , (௡ାଵݔ ≥ 1 for all ݊ = 0,1,2 … … . . (2) 
From (2) and (6), it follows that for all ݊ ≥ 1, we have 

௡ݔ)݀ , (௡ାଵݔ = ,௡ିଵݔܶ)݀ (௡ݔܶ
 ≤ ,௡ିଵݔ)ߚ ,௡ିଵݔܶ)݀(௡ିଵݔܶ (௡ݔܶ

 ≤ ߰൫݀(ݔ௡ିଵ, ௡)൯ݔ
௡ݔ)݀ , ≥ (௡ାଵݔ ߰௡൫݀(ݔ଴, ݊ ଵ)൯ for allݔ ≥ 1

   (4) 

Using (5) , we have 
௡ݔ)݀ , ≥ (௠ݔ ௡ݔ)݀ , (௡ାଵݔ + ,௡ାଵݔ)݀ (௡ାଶݔ

,௡ାଶݔ)݀+  (௡ାଷݔ + ⋯+ ,௠ିଵݔ)݀ (௠ݔ

 ≤ ෍  
௠ିଵ

௞ୀ௡

 ݀ ௞ݔ) , (௞ାଵݔ

 ≤ ෍  
௠ିଵ

௞ୀ௡

 ߰௞൫݀(ݔ଴, ଵ)൯ݔ

 

Since ߰ ∈ Ψ and ݀(ݔ଴, (ଵݔ > 0, by lemma 1.2, we get ∑  ஶ
௞ୀଵ ߰௞݀(ݔ଴, (ଵݔ < ∞ 

 Thus, we have lim
௡,௠→଴

௡ݔ)݀  , (௠ݔ = 0. 
 This implies that {ݔ௡} is a digital Cauchy sequence in the complete digital metric space ( ܺ, ݀,  .( ߩ
Since ( ܺ, ݀, ݑ is complete, there exist ( ߩ ∈ ܺ such that {ݔ௡} is digital convergent to ݑ. Since ܶ is digital 
continuous, it follows that {ܶݔ௡} is digital convergent to ܶݑ. By the uniqueness of the limit, we get 
ݑ =  .ܶ is a fixed point of ݑ ,that is ,ݑܶ
 The next theorem does not require continuity. 
 
Theorem 1.5: Let ( ܺ, ݀, ܺ:ܶ be a complete digital metric space. Suppose that ( ߩ → ܺ is a digital- ߚ −
߰-contractive mapping and the following conditions satisfies: 
(i)  ܶ is ߚ-admissible; 
(ii) there exists ݔ଴ ∈ ܺ such that ݔ)ߚ଴, (଴ݔܶ ≥ 1; 
(iii) If {ݔ௡} is a sequence in ܺ such that ݔ)ߚ௡ , (௡ାଵݔ ≥ 1 for all ݊ and {ݔ௡} is a digital convergent to ݔ ∈ ܺ, 
then ݔ)ߚ௡ , (ݔ ≥ 1 for all ݊ . 
 Then there exist ݑ ∈ ܷ such that ܶ ݑ =  .ݑ
Proof: Following the proof of theorem 3.4, we know that the sequence {ݔ௡} defined by ݔ௡ାଵ = ௡ݔܶ  for 
all ݊ ≥ 0 is a Cauchy sequence in the complete metric space ( ܺ, ݀, ݑ that is digital convergent to ( ߩ ∈ ܺ, 
From (6) and (iii), we have 

௡ݔ)ߚ , (ݑ ≥ 1 for all ݊ ≥ 0. (5) 
Using the basic properties of digital metric together with (2) and (5), we have 

௡ାଵݔ)݀ , = (ݑܶ ௡ݔܶ)݀ , (ݑܶ
 ≤ ,௡ݔ)ߚ ,௡ݔܶ)݀(ݑ (ݑܶ
 ≤ ߰൫݀(ݔ௡, ൯(ݑ

 

Letting ݊ → ∞, and since ߰ is continuous at ݐ = 0, it follows that 
,ݑ)݀ (ݑܶ = 0 

By definition, we obtain ݑ =  ݑܶ
 With the help of the following example, we show that the hypotheses in theorems 1.4 and 1.5 do 
not guarantee uniqueness of the fixed point. 
Example 1.6: Let ܺ = [0,∞) be the digital metric space, where ݀(ݔ, (ݕ = ݔ| − ,ݔ for all |ݕ ݕ ∈ ܺ. 
Consider the self- mapping ܶ : ܺ → ܺ given by 

ݔܶ = ൞
ݔ2 −

7
4

 if ݔ > 1,
ݔ
4

 if 0 ≤ ݔ ≤ 1.
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 Notice that 1.16, a characterization of the Banach fixed point theorem, cannot be applied in this 
case because ݀(ܶ1,ܶ2) = 2 > 1 = d(1,2). 
 
Define ࢼ: ܺ × ܺ → [0,∞), as 

,ݔ)ߚ (ݕ = ቄ1 if ݔ, ݕ ∈ [0,1]
0 otherwise 

 

 Let ߰(ݐ) = ௧
ଶ

 for ݐ ≥ 0. Then, we conclude that ܶ is a digital- ߚ − ߰-contractive mapping. In fact, 
for all ݔ, ݕ ∈ ܺ, we have 

,ݔ)ߚ ,ݔܶ)݀(ݕ (ݕܶ ≤
1
2
,ݔ)݀  .(ݕ

 On the other hand, there exists ݔ଴ ∈ ܺ such that ݔ)ߚ଴, (଴ݔܶ ≥ 1. Indeed, for ݔ଴ = 1, we have 
,1)ߚ ܶ1) = ߚ ቀ1, ଵ

ସ
ቁ = 1 

 Notice also that ܶ is continuous. To show that ܶ satisfies all the hypotheses of  
Theorem 1.4, it is sufficient to observe that ܶ is ߚ-admissible. For this purpose, let ݔ, ݕ ∈ ܺ such that 
,ݔ)ߚ (ݕ ≥ 1, which is equivalent to saying that ݔ, ݕ ∈ [0,1]. Due to the definitions of ߚ and ܶ, we have 

ݔܶ =
ݔ
4
∈ [0,1], ݕܶ =

ݕ
4
∈ [0,1]. 

 Hence, ݔܶ)ߚ, (ݕܶ ≥ 1. As a result, all the conditions of theorem 1.4 are satisfied. Note that 
theorem 1.4 guarantees the existence of a fixed point but not the uniqueness. In this example 0 and ଻

ସ
 

are two fixed points of ܶ. 
 In the following example ܶ is not continuous. 
 
Example 1.7: Let ܺ, ݀ and ߚ be defined as in example 3.6. Let ܶ:ܺ → ܺ 

ݔܶ = ൞
ݔ2 −

7
4

 if ݔ > 1
ݔ
3

 if 0 ≤ ݔ ≤ 1
 

 let ߰(ݐ) = ௧
ଷ
 for ݐ ≥ 0. Then we conclude that ܶ is a digital- ߚ − ߰-contractive mapping. In fact, 

for all ݔ, ݕ ∈ ܺ, we have 

,ݔ)ߚ ,ݔܶ)݀(ݕ (ݕܶ ≤
1
2
,ݔ)݀  (ݕ

 Furthermore, there exist ݔ଴ ∈ ܺ such that ݔ)ߚ଴, (଴ݔܶ ≥ 1. For ݔ଴ = 1, we have 1)ߚ, ܶ1) =
ߚ ቀ1, ଵ

ଷ
ቁ = 1. 

 Let {ݔ௡} be a sequence such that ݔ)ߚ௡ , (௡ାଵݔ ≥ 1 for all ݊ ∈ ℕ and as ݔ௡ → ݊ as ݔ → ∞. by the 
definition of ߚ, we have ݔ)ߚ௡ , (௡ାଵݔ ≥ 1 for all ݊ ∈ ℕ. then we see that ݔ௡ ∈ [0,1]. Thus, ݔ)ߚ௡ , (ݔ ≥ 1. 
 To show that ܶ satisfies all the hypotheses of Theorem 2.5, it is sufficient to observe that ܶ is ߚ-
admissible. For this purpose, let ݔ, ݕ ∈ ܺ such that ݔ)ߚ, (ݕ ≥ 1. It is equivalent to saying that ݔ, ݕ ∈ [0,1]. 
Due to the definition of ߚ and ܶ, we have 

ݔܶ =
ݔ
3
∈ [0,1], ݕܶ =

ݕ
3

[0,1]. 
Hence ݔܶ)ߚ, (ݕܶ ≥ 1. 
 As a result, all the conditions of the theorem 1.5 are satisfied. In this example, 0 and ଻

ସ
 are two 

fixed points of ܶ. 
 
Theorem 1.8: Adding the following condition to the hypotheses of theorem 1.4 and 1.5 we obtain the 
uniqueness of a fixed point of ܶ. 
 For all ݔ, ݕ ∈ ܺ, there exist ݖ ∈ ܺ such that ݔ)ߚ, (ݖ ≥ 1 and ݕ)ߚ, (ݖ ≥ 1. 
Proof: Let ݑ, ∗ݑ ∈ Fix(ܶ) then by the given condition ݑ)ߚ, (ݖ ≥ 1 and ݑ)ߚ∗, (ݖ ≥ 1 
Since ܶ is ߚ-admissible, we get by induction that 
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,ݑ)ߚ ܶ௡ݖ) ≥ ,∗ݑ)ߚ1 ܶ௡ݖ) ≥ 1 for all ݊ = 1,2,3, … #(6)  
From (9) and (5), we have 

,ݑ)݀ ܶ௡ݖ) = ݀൫ܶݑ, ܶ(ܶ௡ିଵݖ)൯
 ≤ ,ݑ)ߚ ܶ௡ିଵݖ)݀൫ܶݑ, ܶ(ܶ௡ିଵݖ)൯
 ≤ ߰൫݀(ݑ, ܶ௡ିଵݖ)൯

 

Thus, we get by induction that 
(ݖ௡ܶ,ݑ)݀ ≤ ߰௡(݀(ݑ, ݊ for all ((ݖ = 1,2,3, … 

Letting ݊ → ∞, and since ߰ ∈ Ψ, we have 
,ݑ)݀ ܶ௡ݖ) → 0. 

 This implies that {ܶ௡ݖ} is digital convergent to ݑ. Similarly, we get {ܶ௡ݖ} is digital convergent to 
ݑ By the uniqueness of the limit, we get .∗ݑ = ܶ that is, the fixed point of ,∗ݑ  is unique. 
 
Conclusion: 
 Since digital contractive mappings apply the well-known Banach contraction principle to the 
non-Euclidean, integer-based character of digital spaces, they are essential for researching discrete 
systems. They define contractions using digital measurements like the shortest route distance rather 
than the conventional Euclidean distance. The important realization is that a mapping that moves 
points "closer" together in this particular metric would ultimately converge to a single fixed point, even 
in a discrete space. There are important applications for this framework. It is employed in fields such as 
digital image processing, where algorithms frequently have to identify a particular pixel or area that 
doesn't change despite undergoing a number of changes. It may also be used to analyse the stability of 
routing algorithms or iterative processes in computer graphics and network theory. The theory offers a 
solid mathematical foundation for demonstrating that some discrete processes will always come to an 
end and result in a reliable, consistent outcome. The main finding is that digital contractive type 
mappings effectively connect discrete computational issues with continuous fixed-point theory. They 
provide a strong and sophisticated way to guarantee stability and convergence in a variety of 
computational and digital applications. 
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