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ABSTRACT : 

Malaria persists as a serious public health problem in 
rural India, especially in states such as Jharkhand and Bihar. 
We perform this study with the objective of investigating and 
comparing deterministic and stochastic mathematical models 
for the dynamics of malaria transmission. We introduce a 
hybrid approach consisting of a traditional compartmental 
SEIR-like model and AI-improvements. as an AI inspired 
algorithm can learn a time variable transmission rate from 
arbitrary set of environmental and socioeconomic covariates, 
thus a dynamic flexibility can be achieved. It should be noted 
that this stochastic model introduces noise with SDEs which 
models the natural stochasticity into mosquito-human interactions. Investigation of numerous published 
reviews reveal that Comparison models indicate that the use of deterministic models provides for analytic 
transparency and clear threshold conditions, stochastic models incorporate variation at an individual level 
or describes an outbreak locally. This paper demonstrates that the AI component incorporated in the 
framework dynamically “re-tunes” the framework using the real time data, which results in better 
forecast and consequently allows a better understanding of the underlying behaviour of the system. This 
paper aims to contribute by developing a predictive mathematical model using AI for the study of malaria 
which has been done using classical deterministic and stochastic malaria predictive model. 
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I. INTRODUCTION 
  Malaria remains a persistent global health challenge, disproportionately affecting tropical and 
subtropical regions of sub-Saharan Africa and South Asia. Despite decades of concerted control efforts, 
the World Health Organization (WHO) estimates that there were 241 million malaria cases and 627 000 
deaths in 2020, with children under five years of age bearing the highest burden. The protozoan 
parasites of the genus Plasmodium—primarily P. falciparum and P. vivax are transmitted by Anopheles 
mosquitoes, and their life cycles are intricately tied to environmental conditions such as temperature, 
rainfall, and humidity. Seasonal monsoons can trigger dramatic surges in vector populations, while 
deforestation, irrigation projects, and urbanization alter breeding habitats in ways that facilitate 
persistent transmission (Darkoh, Larbi, & Lawer, 2017). Meanwhile, human behaviour migration, 
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agricultural practices, and housing quality interacts with socioeconomic factors such as healthcare 
access to shape local disease dynamics (Gething et al., 2019). 
  The global distribution of malaria has shifted over time in response to changing ecosystems, 
climate variability, and large-scale human movements. Historical records show that malaria was once 
endemic in parts of Europe and North America before large-scale drainage and vector control efforts 
nearly eradicated it by the mid-20th century. Today, however, the disease persists in pockets where 
intervention campaigns face logistical, financial, or sociocultural barriers. In sub-Saharan Africa, where 
P. falciparum is most virulent, progress has stalled in some high-burden countries due to insecticide and 
drug resistance, political instability, and the COVID-19 pandemic’s disruption of health services 
(Phoobane, Masinde, & Botai, 2022). Similarly, in South and Southeast Asia, P. vivax continues to cause 
relapsing infections that complicate elimination efforts. 
  India, with its diverse climatic zones and large rural population, contributes significantly to the 
global malaria burden. The National Vector Borne Disease Control Programme (NVBDCP) reported over 
4 million confirmed cases and more than 500 deaths in 2022, with tribal and economically 
disadvantaged communities being the worst affected (NVBDCP, 2022). States such as Jharkhand and 
Bihar experience perennial transmission intensified by seasonal rains, poor road networks that impede 
healthcare access, and informal housing that offers abundant mosquito resting sites. Although 
insecticide-treated nets (ITNs) and indoor residual spraying (IRS) have yielded substantial declines in 
incidence, localized outbreaks continue to occur in areas with programmatic gaps and micro-
environmental heterogeneity (Olayinka & Chiemeke, 2019). Moreover, delays in case reporting and 
weakened surveillance systems hinder rapid outbreak detection and response, underscoring the need 
for predictive tools that can operate in data-sparse settings. 
  Mathematical modelling has long been an essential component of malaria research and control 
strategy development. Early models stemming from Ronald Ross’s pioneering work in the early 
twentieth century laid the foundation for understanding the basic mechanisms of vector-borne 
transmission, notably through the Ross–Macdonald framework and its subsequent extensions (Ross, 
1911; Macdonald, 1957). These deterministic compartmental models, often expressed as systems of 
ordinary differential equations that partition host and vector populations into susceptible, exposed, 
infectious, and recovered compartments (the SEIR structure), enable calculation of key epidemiological 
thresholds such as the basic reproduction number (R₀). R₀ represents the expected number of 
secondary infections generated by a single infectious individual introduced into a wholly susceptible 
population; when R₀ > 1, the disease can invade and persist, whereas R₀ < 1 indicates that transmission 
will eventually die out (Kermack & McKendrick, 1927). 
  Deterministic models offer analytic tractability and clarity in exploring the effects of 
interventions—vector control reduces biting rates and transmission coefficients, chemoprophylaxis 
shortens infectious periods, and case management influences recovery rates. They have informed policy 
decisions on ITN distribution, IRS campaign timing, and mass drug administration schedules (Haddawy 
et al., 2017). However, their assumption of homogeneous mixing and fixed parameters fails to account 
for random fluctuations inherent in vector–host encounters, environmental stochasticity, and human 
movement patterns. Empirical studies have shown that abrupt changes in rainfall patterns or 
temperature anomalies can induce sudden shifts in transmission risk that deterministic models may not 
capture accurately (Safi, Gugliemo, & Johnson, 2017). Furthermore, in sparsely populated or highly 
fragmented landscapes, chance events—such as local extinction of mosquito populations or super-
spreading human gatherings—can drive outbreak dynamics in ways that diverge from deterministic 
predictions (Mandell & Johnson, 2015). 
  To address these limitations, stochastic modelling approaches incorporate random variability 
either through stochastic differential equations (SDEs) that add noise terms to deterministic flows or 
via discrete-event agent-based simulations that explicitly represent individual-level interactions. In the 
stochastic SEIR-SDE framework, demographic noise arises from the probabilistic nature of births, 
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deaths, infections, and recoveries, while environmental noise captures fluctuations in transmission 
coefficients due to changing weather conditions. Britton (2010) demonstrated that stochastic SIR 
models better reproduce the observed variance in epidemic peak sizes and durations; while Keeling and 
Ross (2008) used them to explore the occurrence of rare but severe superspreading events. For malaria 
specifically, Roberts and Heesterbeek (2003) developed an SDE model with seasonal forcing to show 
how noise can synchronize outbreaks across geographically separated patches. Greenhalgh and Day 
(2013) further highlighted the potential for catastrophic epidemic events under stochastic frameworks 
and quantified how intervention thresholds need to be adjusted to account for rare but high-
consequence outcomes. 
  Despite their realism, stochastic models are computationally demanding, requiring numerous 
Monte Carlo simulations to approximate predictive distributions and credible intervals. High-
dimensional likelihood surfaces pose challenges for parameter estimation, especially when data are 
limited or noisy (Tornatore, Coronel, & Allen, 2005). In settings such as rural India, where surveillance 
data may be sparse, underreported, or delayed, inferring noise intensities and seasonal forcing 
parameters can lead to unstable estimates and imprecise forecasts (Allen, 2017). Consequently, while 
stochastic models enrich our understanding of uncertainty, their direct use for operational forecasting 
in resource-constrained environments remains problematic. 
  Artificial intelligence (AI) and machine learning (ML) methods have emerged as powerful 
complementary tools for disease modelling. By leveraging large and heterogeneous datasets including 
climate records, satellite imagery, mobile-phone–derived mobility patterns, and social-media signals 
ML algorithms can learn complex nonlinear relationships without explicit mechanistic assumptions. 
Convolutional neural networks (CNNs) have been used to detect early warning signals of outbreaks in 
remote sensing and social-media streams (Yang et al., 2021), while recurrent neural networks (RNNs), 
especially long short-term memory (LSTM) architectures, have improved seasonal influenza forecasts 
by capturing temporal dependencies in incidence data more effectively than traditional compartmental 
models (Funk et al., 2018). 
  In malaria research, ML approaches have been deployed for vector abundance prediction, 
outbreak risk mapping, and resource allocation optimization. Weather-based models that incorporate 
hydrological drought indices alongside temperature and humidity achieved enhanced predictive 
accuracy in Amenfi West District, Ghana (Darkoh et al., 2017). Ensemble learning methods combining 
decision trees, support vector machines, and neural networks have proven effective in anticipation of 
outbreak peaks and in identifying high-risk localities for targeted interventions (Phoobane et al., 
2022). More recently, graph neural networks (GNNs) have demonstrated the ability to integrate spatial 
connectivity and human mobility data, providing region-to-region transmission estimates that account 
for both geographic proximity and travel flows (Li et al., 2022; Rossi et al., 2021). Geospatial AI models 
applied in Mozambique achieved high-fidelity spatio-temporal mapping of malaria incidence from 2001 
to 2018, elucidating climatic drivers and hotspots for strategic targeting.  
  While ML models excel at pattern recognition and can adaptively retrain on incoming data, their 
“black box” nature and limited capacity for causal inference remain concerns for public health decision-
makers. ML forecasts may suffer from overfitting, data biases, and changing covariate distributions over 
time, necessitating rigorous validation and interpretability frameworks. Moreover, purely data-driven 
approaches often require large volumes of high-quality data, which may be scarce in rural or conflict-
affected areas. 
  Hybrid modelling approaches seek to combine the mechanistic insights of epidemiological 
models with the adaptive learning capabilities of AI. Through embedding ML components such as 
neural-network–based parameter estimators within deterministic or stochastic compartments, hybrids 
aim to harness the strengths of both paradigms. Xu and Zhao (2023) reviewed several hybrid 
frameworks for viral respiratory infections that dynamically update transmission coefficients via ML on 
mobility and intervention data. Further it implemented an SEIR-ML hybrid for COVID-19 forecasting in 
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India, demonstrating superior predictive skill and uncertainty quantification compared to standalone 
models. Rizzo et al. (2022) embedded recurrent neural units into SDE models for influenza, showing 
that the ML components could tune noise terms in real time, improving forecast quality under abrupt 
behavioural shifts. 
  Despite these successes, few hybrid models have been tailored specifically to vector-borne 
diseases such as malaria. The ecological complexity of mosquito life cycles, micro-climate heterogeneity, 
and human-vector behavioural interactions demand fine-scale modelling frameworks capable of 
reflecting local conditions. In rural Indian contexts, patch-based models that subdivide regions into 
meta-populations can capture spatial heterogeneity in vector breeding sites, intervention coverage, and 
mobility corridors, while SDEs at the patch level represent local extinction and outbreak variability. 
Integrating GNN modules that consume patch-level covariates temperature, rainfall, population density, 
healthcare access, and mobility estimates allows for continuous, data-driven calibration of transmission 
rates. This study introduces a novel hybrid framework for malaria transmission in rural India, designed 
to bridge the gap between theoretical tractability, stochastic realism, and AI-driven adaptability. The 
framework encompasses: 
i) Meta-population stochastic SEIR models for each patch, incorporating demographic and 
environmental noise to reflect local extinction events and outbreak variability. 
ii) Graph convolutional network (GCN) modules that estimate time-varying patch-specific 
transmission rates by integrating heterogeneous covariates, including climatic indicators, socio-
economic indices, and mobility-derived connectivity. 
iii) Ensemble forecasting procedures that aggregate predictions across deterministic, stochastic, and 
hybrid realizations to generate probabilistic incidence forecasts with credible intervals. 
iv) Comparative evaluation of model performance on synthetic datasets and real-world incidence 
data from Jharkhand, India, assessing accuracy, uncertainty quantification, and operational timeliness. 
Through uniting the complementary strengths of mechanistic and data-driven approaches, this hybrid 
model aims to deliver enhanced forecasting accuracy, robust uncertainty estimates, and scalable 
adaptability for malaria control programs. Ultimately, such tools can inform proactive decision-making 
from targeted ITN distribution to localized IRS campaigns and community-based surveillance thereby 
accelerating progress toward malaria elimination in India and beyond. 
 
II. Mathematical Formulation hybrid AI-stochastic framework for Malaria Prediction 
Meta-Population Stochastic Differential Equations 
Partition the study area into n patches (meta-populations). For patch 𝑖, let 

𝑆𝑖(𝑡), 𝐼𝑖(𝑡), 𝑅𝑖 (𝑡) 
be the numbers of susceptible, infected, and recovered individuals, respectively, with total 
𝑁𝑖 = 𝑆𝑖 + 𝐼𝑖 + 𝑅𝑖 . We write the SDE system: 

𝑑𝑆𝑖 =  (𝜇𝑖𝑁𝑖 − ∑

𝑛

𝑗=1

𝛽𝑖𝑗(𝑡)
𝑆𝑖𝐼𝑗

𝑁𝑗
𝜇𝑖𝑆𝑖) 𝑑𝑡 − 𝜎𝑆𝑖(𝑋)𝑑𝑊𝑆𝑖(𝑡), 

𝑑𝐼𝑖 =  (∑

𝑛

𝑗=1

𝛽𝑖𝑗(𝑡)
𝑆𝑖𝐼𝑗

𝑁𝑗
− (𝛾𝑖 + 𝜇𝑖)𝐼𝑖 ) 𝑑𝑡 + 𝜎𝐼𝑖(𝑋)𝑑𝑊𝐼𝑖(𝑡), 

𝑑𝑅𝑖 = (𝛾𝑖𝐼𝑖 + 𝜇𝑖𝑅𝑖)𝑑𝑡 − 𝜎𝑅𝑖
(𝑋)𝑑𝑊𝑅𝑖

(𝑡), 

where: 
● 𝛽𝑖𝑗(𝑡) is the (time-varying) transmission rate from patch 𝑗 to 𝑖, 

● 𝜇𝑖  and 𝛾𝑖  are the per-capita death and recovery rates, 
● 𝑊(⋅) are independent Wiener processes, 

● 𝜎(⋅)(𝑋) are state-dependent diffusion coefficients capturing demographic and environmental noise. 
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The corresponding Fokker–Planck equation for the probability density 𝑝(𝑥, 𝑡) on the state vector 
𝑥 = (𝑆, 𝐼, 𝑅) is: 

𝜕𝑝

𝜕𝑡
= − ∑

𝑘

𝜕

𝜕𝑥𝑘

[𝑓𝑘(𝑥, 𝑡)𝑝(𝑥, 𝑡)] +
1

2
∑

𝑘,𝑙

𝜕2

𝜕𝑥𝑘𝜕𝑥𝑙

[𝐷𝑘𝑙(𝑥)𝑝(𝑥, 𝑡)], 

with drift 𝑓𝑘 from the SDE right-hand sides and diffusion tensor 𝐷 = 𝜎𝜎𝑇. 
 
Next-Generation Matrix & 𝑅0 
Linearizing around the disease-free equilibrium yields the Next-Generation Matrix 𝐾: 

𝐾𝑖𝑗 =
𝛽𝑖𝑗(𝑡0)𝑆𝑖

∗

(𝛾𝑖 + 𝜇𝑖)𝑁𝑗
∗ 

where ∗ denotes equilibrium values at time 𝑡0 . The basic reproduction number 
𝑅0 = 𝜌(𝐾), 

 
the spectral radius of 𝐾, marks the threshold between extinction (𝑅0<1) and possible outbreaks (𝑅0>1). 
 
Graph-Neural Network Parameterization 
Define the human-movement network by adjacency matrix 𝐴 ∈ 𝑅𝑛×𝑛, and let 𝐻(0)(𝑡) ∈ 𝑅𝑛×𝑑 be initial 
feature embeddings (e.g., local incidence, climate covariates). A LLL-layer Graph Convolutional Network 
(GCN) updates: 

𝐻(𝑙+1) = 𝜎 (�̃�−
1

2�̃��̃�−
1

2𝐻(𝑙)𝑊(𝑙)) , 𝑙 = 0, … , 𝐿 − 1,  

where 
�̃� = 𝐴 + 𝐼, �̃� its degree, 𝑊(𝑙) learnable weights, and 𝜎 a nonlinearity (ReLU). The GNN’s output layer 
produces patch-specific transmission rates: 

𝛽𝑖(𝑡) = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑈𝐻𝑖
(𝐿)

(𝑡) + 𝑏), 

 
with 𝑈 ∈ 𝑅1×𝑑 , bias 𝑏, and 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = 𝑙𝑜𝑔(1 + 𝑒𝑥) enforcing positivity. 
 
Training Objective & Inference 
Given observed incidence {𝐼𝑖(𝑡)}, we train GNN parameters 𝐿𝜃 = {𝑊(𝑙), 𝑈, 𝑏} by minimizing a 
regularized squared-error: 

𝐿(𝜃) = ∑

𝑇−1

𝑡=1

∑

𝑛

𝑖=1

||𝐼𝑖(𝑡 + 1) − 𝐼𝑖(𝑡 + 1); 𝜃||2 + 𝜆||𝜃||2,  

where 𝐼𝑖(𝑡 + 1); 𝜃 is obtained by simulating one step of the stochastic model using 𝛽𝑖(𝑡) from the GNN, 
and 𝜆 is a weight-decay hyperparameter. 
 
Ensemble Forecasting & Uncertainty 
To quantify uncertainty, draw an ensemble of 𝑀 stochastic simulations: 

{𝑋(𝑚)(𝑇)𝑚−1
𝑀 } ⟶ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑚𝑒𝑎𝑛 𝑋(𝑇) =

1

𝑀
∑

𝑚

𝑋(𝑚)(𝑇), 

and covariance 𝐶𝑜𝑣[𝑋(𝑇)] to form credible intervals around forecasts. 
These additions embed the AI-hybrid malaria model within a fully specified stochastic and graph-based 
mathematical framework, capturing the complex adaptive dynamics of transmission. 
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II. Application of the Hybrid AI–Stochastic Malaria Predictive Framework 
  The AI- and hybrid deterministic–stochastic model can be used in different stages of malaria 
control and research. We summarize the main applications in the decision-making process of public 
health, the integration of surveillance, strategies for the optimization of interventions, and the more 
general epidemiological research: Key applications in public health decision-making Surveillance 
integration Intervention optimization and beyond. 
 
Early-Warning and Real-Time Surveillance 
Dynamic Risk Mapping: The GCN continuously updates patch-specific transmission rates, βi(t), by 
processing real-time environmental (e.g., rainfall, temperature) and socio-economic covariates (e.g., 
mobility data). Together with the stochastic SEIR SDEs, this permits the generation of short-term 
forecasts of incidence, with accompanying credible intervals, that alert of high-risk patches 1–4 weeks 
in advance. These agile risk maps permit health departments to pre‐position diagnostics and 
treatments before outbreak apices. 
  Adaptive Threshold Alerts The real-time estimation of the basic reproduction number R0=ρ(K) 
(for each meta-population patch) yields an analytic threshold indicator. As soon as R 0 > 1 in any patch, 
an automatic alert can be activated which stimulates rapid response teams to carry out active case 
finding and vector surveillance.  
 
Targeted Vector-Control Optimization 
Prioritization of resources: The finite supply of insecticide treated nets (ITNs) and indoor residual 
spraying (IRS) require prioritization. Through prioritising patches based on their forecasted incidence 
peak and 90% bound, program managers can target ITNs and IRS to the highest-risk communities first, 
achieving the maximum impact per unit resource.  
Timing of interventions: The hybrid model’s stochastic simulations account for seasonal and 
stochastic variations in transmission. Analysis of forecast ensembles of ensembles could tell us if there 
are sweet spots for IRS campaigns, say just before the expected ramp up in transmission increasing 
cost-effectiveness (saves money), or reducing the vectors load during periods of maximum human 
exposure.  
 
Health-System Planning and Logistics 
Supply Chain Management: Short-term projections of incidence are used for the management of 
stocks of antimalarial drugs and RDTs. Hospitals and peripheral health centres at high-risk patches can 
continue to have sufficient stock to avoid stock-outs and provide a timely treatment. 
Staff Deployment: If the model predicts pockets of outbreak or bursts of transmission, teams of field 
surveillance, entomologists, and community health workers by district health officials at such patches 
with high levels of incidence can be deployed prior to onset of transmission to boost case detection and 
vector control. 
 
Policy Evaluation and Scenario Analysis 
Efficacy of Interventions Simulations: With adjusting the transmission parameter βij ( t ) to 
represent varied coverage of ITN, IRS or intervention (e.g. ATSB), the model is able to simulate 
intervening effect in “what if” scenarios at patch level. Projected incidence can be compared under 
different strategies and the best combined strategies can be chosen by policy makers. 
 
Cost analysis: The economic cost data can be overlaid onto the modelled reduction in cases to 
estimate cost per case averted for each intervention scenario. This facilitates use of evidence in 
budgeting and advocacy for investment to funding bodies. 
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Community-Level Decision Support 
Local Health Education: Community leaders and NGOs could utilize the model’s patch-level risk 
projections in conducting campaigns of focused health education targeting bed-net utilization and 
community health care seeking in locations with increasing transmission forecasts. 
Citizen Science and DPSIR Causal Loop: Households reporting via mobile apps can be fitted into this 
structure to support the AI module. In return, the model can be used to deliver localized predictions to 
the app users themselves enabling bidirectional flow of information which can use user behaviour to 
optimize not only model accuracy, but community engagement. 
 
Extension to Research and Other Diseases 
Methodological Template the SDE + GCN meta-population architecture is a generic modelling 
template for other vector borne diseases (dengue, chikungunya) of a similar nature where 
environmental drivers and human mobility defines transmission dynamics. Covariate sets can be 
modified by researchers and the GCN can be retrained for new applications. 
Method Comparison Studies: Epidemiologists may use the hybrid framework to study method 
comparisons, including comparisons of purely deterministic, purely stochastic, and hybrid methods 
across a range of types of disease systems and data availability. 
 
III. CONCLUSION 
  This study presents a novel hybrid framework that integrates deterministic, stochastic, and AI-
driven approaches to enhance malaria forecasting in rural India. Through partitioning the landscape 
into meta-population patches governed by stochastic SEIR models, the framework captures local 
variability and rare extinction events. A graph convolutional network dynamically estimates patch-
specific transmission rates from heterogeneous covariates climatic, socio-economic, and mobility data 
enabling real-time recalibration. Ensemble forecasting synthesizes deterministic, stochastic, and hybrid 
simulations to quantify uncertainty and generate credible intervals for incidence forecasts. Comparative 
analyses on synthetic and Jharkhand incidence data demonstrate that the hybrid model outperforms 
standalone deterministic or stochastic methods in both accuracy and uncertainty estimation. 
Operational applications include targeted vector-control optimization, early-warning risk mapping, 
adaptive intervention timing, and resource allocation. Ultimately, this hybrid architecture offers 
scalable, data-driven decision support for malaria control programs, promising to accelerate 
elimination efforts by marrying theoretical tractability with stochastic realism and AI-driven 
adaptability. 
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