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ABSTRACT: 

In this study, we propose a basis examination method 
to find the global optima of the multi-level linear/ linear 
fractional programming problem in which the objective 
function of the first level is linear and the objective functions 
of other levels are linear fractional. The feasible region is a 
polyhedron. Here we prove that the global optima is an 
extreme point of the polyhedron. This is proved by taking into 
account the relationship between feasible solutions of the 
problem and basis of the technological coefficient submatrix 

associated to the variables of a particular level. A numerical example demonstrates the feasibility of the 
proposed approach. 
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INTRODUCTION: 
Multi-level programming (MLP) 
is an important and challenging 
branch of mathematical 
programming. It has 
applications in modelling and 
solving decentralised planning 
problems in which more than 
one decision-maker seeks their 
own interest. Bi-level 
programming (BLP) is a special 
case of MLP with a structure of 
two-levels in a hierarchical 
decision system. An important 
characteristic of MLP problems 
is that a planner at a certain 
level of hierarchy may have his 
objective function whereas the 
decision space is determined, 
partially, by other levels 
(Anandalingam, 1988; Vicente  

and Calamai, 1994; Wen and 
Hsu, 1991). 
Bi-level linear programming has 
been introduced by Candler and 
Townsley (1982). Also, a 
bibliography of references on 
BLP and MLP in both linear and 
nonlinear cases has been given 
and a survey on fractional 
programming has been done 
which covers applications as 
well as major algorithmic and 
theoretical developments 
(Vicente and Calamai, 1994; 
Schaible, 1995; Colson, Marcotte 
and Savard, 2007). In case of 
bilevel programming problems,  
it has been proved that there 
exists an extreme point of the 
polyhedron that gives the 
optimal solution to the problem 
(Calvete and Gale, 1998, 1999, 
2004). The maximum of a 
weighted sum of the objective 
functions in a multiple objective  

linear fractional programming 
(MOLFP) can be computed 
(Costa, 2007). The linear 
fractional programming 
problems can be solved by an 
iterative method based on the 
conjugate gradient projection 
method (Tantawy, 2008). A 
global optimal solution of multi-
level linear fractional 
programming problems has 
already been given for integer 
case (Bhargava, 2011). 
In this paper, we prove that 
under the usual assumptions 
there is an extreme point of the 
polyhedron S which solves the 
given problem. Also, we propose 
an enumerative method to 
efficiently search for a basis 
which provides an optimal 
solution. One of its most 
outstanding features is that this 
implicit search is only made 
among basis of the technological  
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coefficient sub-matrix corresponding to variables of each level one by one.  
The paper is organized as follows: In next section multi-level linear/ linear fractional 

programming problem is defined which is followed by some assumptions and notations. After that 
some preliminaries, two theorems and the algorithm are given.  In addition, to facilitate the 
comprehension of the algorithm a numerical example is solved. Finally, conclusions are drawn. 

 
PROBLEM FORMULATION 
The multi-level linear/ linear fractional programming problem (MLLFP) is defined as: 
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                s.t  1 2 3( , , ,... )nx x x x S  
 

Where 1 1 2 2, ,...n n n
n nx R x R x R   are the variables controlled by the first, second and the nth level 

decision maker respectively.
1 2 11 12 1 21 22 2, ... , , ... , ... , 1,2... 1n n n

i i i i i ik k k c c c c c c i n   are the vectors of 

conformal dimension, i  and i are scalars 1,2... 1i n   and the common constraint region to all the 

levels is a polyhedron i.e  1 2
1 2 1 2( , ... ) : ... , 0, 1, 2...n

n n jS x x x A x A x A x b x j n      
where 

jA is a 

m×n matrix and 1,2...j n  ,b is an m-vector. 
 
Some Assumptions and Notations 
Let us introduce some additional assumptions and notations.  

 We assume that polyhedron S is non-empty and compact. 
 Matrix An has full row rank and m<nn. 

 
21 22 2

1 2 ... 0n
i i i i nc x c x c x     , 1 2( , ,... )nx x x S  otherwise it is sufficient to consider the 

feasible region of the first level as   1 1 1 1 2: , ...n
nS x R x x x S  

. Let S1 be the projection of S 

onto 1
nR i.e and   1 1 1 1 2: , ...n

nS x R x x x S  
. 

 V1, V2… Vn, are the sets of indices of first, second and so on up till nth level controlled variables 
respectively.  

 The feasible region of the second level decision maker is
   2 3 1

2 1 2 2 2 3 1 2: ... , 0n n
nS x x R A x A x A x b A x x      
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 The feasible region of the nth level decision maker is 
   1 2 3 1

1 2 1 1 2 3 1 1, ... : ... , 0n n n
n n n n n n nS x x x x R A x b A x A x A x A x x

         
. 

 The inducible region of the first level decision maker will be denoted by 
    1 2, ,... : 0, 1,2... 1n iIR x x x x i n    

11 12 1
1 21 1 1 1 2 1

1 221 22 2
1 1 1 1 2 1

( ... )arg min . : ... , 0
( ... )

n
nn n n n

n n nn
n n n n n

c x c x c xx A x A x A x b x
c x c x c x




  

   

         
     . 

 Thus for each value of the first level variables, there will be a unique solution to the second level 

problem and likewise for each value of the (n-1)th level variable 1nx   a unique solution to the 

nth level problem nx . 
 
Theorem 1 

The inducible region of MLLFP is formed by the union of connected faces of S and an optimal 
solution to MLLFP occurs at an extreme point of polyhedron S. 

 
Proof: 

Notice that the first level objective function is linear. Hence it is both convex and concave. Since 
it is also differentiable, then it is in particular quasiconcave. On the other hand, the second third and so 
on up till nth level objective functions are the ratio of two affine functions. Hence they are quasi-concave. 
Now the first level decision maker minimizes a continuous function over a compact set. Hence there 
exists a minimizing solution to the MLLFP. By the definition above, it is clear that the induced region is 

formed by the connected faces of S. thus if 
IR S jj

 
 at least one j which gives a minimizing solution to 

the MLLFP and as each
S j is a nonempty compact polyhedron there exist an extreme point of 

polyhedron
S j and hence of S so that the optimal solution of MLLFP occurs at that point. (Refer 

Theorem 1, Calvate and Gale; 1999) 
 
Preliminaries 

Here we develop the algorithm for solving multi-level linear/linear fractional programming 
problems based on basis examination method. The idea of basis examination was proposed in (Candler 
& Townsley, 1982). Earlier (Calvate & Gale, 1999) applied this method to solve bi-level linear/linear 
fractional programming problems. Here we are imposing more restrictions on the examinations of basis 
which are the sub-matrices of Ai which lead to the global optimal solution to the problem MLLFP. We 
also find the necessary conditions which when imposed are giving better solutions and preventing us 
from returning back to any formerly analyzed basis.  

At first for each x1   S1, a feasible solution to the second level problem is obtained by solving the 
following linear fractional problem. 
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Where
' 11
1 1 1 1c x   ,

' 21
1 1 1 1c x    

 

Hence an extreme point of the polyhedron 2 1( )S x is obtained. Then for each  1 2,x x we obtain a 
feasible solution to the third level problem by solving the following linear fractional problem. 
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    s.t.  1 2 1, ...n n nx S x x x   

 

Thus first an extreme point is obtained and the point so obtained  1 2 1, ... nx x x   thus belongs to 
the inducible region (IR). Then we consider a basis Bi of Ai and check the optimality conditions.. To 
solve the fractional problems, parametric approach is considered. In this case, it is known that an 

optimal solution to the following linear parametric problem verifying  1 1 0i iF     is an optimal 
solution to  

LP  1 2, ... ix x x  1 1 1 2, ...i i ix S x x x 
 

Here first we have to show that   1 2, ... ix x x s.t Bi-1 is a basis to a feasible solution of LP
 1 2, ... ix x x . Secondly we have to test that Bi-1 verifies the optimality conditions of problem LP
 1 2, ... ix x x  for some value of parameter i-1 and finally, that for one of these values Fi-1( i-1) =0. 

Regarding the optimality conditions of problem LP  1 2, ... ix x x , it suffices to check that the following 

reduced costs are greater than or equal to zero, regardless of the existence of  1 2, ... ix x x , 
   1 2 1 2 1

1 1 1 1 1 1 1 0i i i i i
i j i i j i B i i B i jc c c c B A j  
          

                                                                 …(1) 

Where
1

1
i
i jc  and 

2
1
i

i jc   are the jth component of vectors  
1

1
i
i jc   and

2
1
i

i jc   respectively and
1

1
i
i Bc   and

1
1
i
i Bc   are 

the m-row vectors of
1

1
i
ic   and

2
1
i
ic   associated to the basic variables of Bi-1 and 

i
jA  is the jth column of Ai. 

Let
1

1 1, u
i i      be the interval of parameter 1i  , computed by setting condition (1). If  

1
1i     or

1
u
i     then the interval

1
1 1, u

i i      will be open in that extreme. 

If there exists no value of 1i  such that basis Bi-1 verifies condition (1), then this basis is of no 
interest because it is impossible to obtain a point of the inducible region corresponding to it. Otherwise, 

we must also ask for the existence of a 
1

1 1 1, u
i i i        such that Fi-1( 1i  ) =0 and  1 1 1 2, ...i i ix S x x x 

such that Bi-1 is a feasible basis to this problem. Thus we can establish the following subset of (IR), 

     ' 1 1 1 ' 2 1 2
1 1: ... ...i n i n

i i i i i i n i i i i i nF c x c x c x c x    
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which corresponds to each basis Bi-1 from Ai verifying condition (1). 
   1 1 1

1 2 1 1 1 1, ... : , ... 0 , ( ( ... ), 0)i
i i i i ix x x x x x B b A x A x 

     ,    
1 1 1
1 1 1( ... ) 0,i

i iB b A x A x 
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1 121 2 1 1 1 1
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...... ( ..... )
...... ( .... )

i i i
l ui i i i iB i i
i ii i i

i i i i iB i i

c x c x c B b A x A x
c x c x c B b A x A x


 



 
   

  
   

     
         

 
Therefore, if this set is non empty, the best point of the inducible region corresponding to basis 

Bi-1 is obtained by solving the following linear problem. 
 

1 1
1 1 1 1( ) . ... ...i i n

i i Bi iB nP B Min k x k x k x k x
       

 

s.t.    
1 1

1 1 1 1... ...i n
i i iBi nA x A x B x A x b
       

 
1 21 11 1 22 12 1 2 1 1

1 1 1 1 1 1 1 2 1 1 1 1 1 1 1( ) ( ) ...( )i i
i i i i i i i iBi i Bi iBi i ic c x c c x c c x                                                  …(2) 

 

 
11 21 12 22 2

1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1( ) ( ) ...( )u u u i u
i i i i i i i Bi i i Bi iBi i i ic c x c c x c c x                                              ...(3) 

 
1 2 1, ... 0iBix x x    

 

Where 1iBix   stands for the variables ix  of related to basis Bi-1 and 1
i
Bik   is the mth row vector of 

ik associated to these variables. Notice that, while basis Bi-1 is being analyzed, the variables of the ith 
level not associated to it remain equal to zero. We also introduce the following relaxed problem, which 
does not take into account constraints (2) and (3).  

 
  1

-1 1 1 1: . : ... ...i n
R i Bi iBi nP B Min k x k x k x     

 
1 1

1 1 1 1... i
i i iBiA x A x B x b
     , 1 2 1, ... 0iBix x x    

 
Now we are extending the result given by Calvate and Gale (1999) for multi-level linear/linear 

fractional programming problems. (Refer lemmas 1-4, Calvate and Gale; 1999) 
 

Theorem 2. 
Problems P(Bi-1) and PR(Bi-1) are equivalent and to obtain a better point of induced region IR , 

basis Ai should include at least one vector with indices j R and jz <0. Also basis Ai  will be feasible only 

if it has at least one vector whose index 1j V Ti i   and 
' 0z j  . 

 
Proof: 

At first to prove that problems P(Bi-1) and PR(Bi-1) are equivalent, we have to prove that they 
have the same optimal solution. As for the optimal solution, difference in the objective functions of P(Bi-

1) and PR(Bi-1) are due to basic variables which are slack variables and have zero cost coefficient, the 
value of the objective function will remain same for the optimal solution and if none of the optimal 
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solution of problem PR(Bi-1) verify the constraints (2) and (3) PR(Bi-1) and hence P(Bi-1) is not feasible. 
Hence problems P(Bi-1) and PR(Bi-1) are equivalent. 

Now to obtain better point of IR let  ' ' ' '
1 2, ... ix x x x

be the optimal solution of P(Bi-1). To proceed 
we divide the set of indices to two parts, one associated to basis Bi-1 and the other associated to non-
basic variables and denote them by Ti-1 & Bi-1 respectively. Let R denote the set of indices of non basic 

variables corresponding to
'x .  

 Let f1(x) be the value of the first-level objective function at x. Then 

'( ) ( )1 1x f x z xj j
j R

f  
 ,

1 i
j j Q jz k k Q A  . where jk  is the jth cost coefficient in f1, Qk  is the m- row vector of 

1 2, ... nk k k k   

associated to basic variables of Q and 
i
jA denotes the jth column vector of matrix 

1 2, ... nA A A    at the ith 

level. For optimality, now if the matrix 
1 2, ... nA A A   is decomposed to ,Q N    here Q and N are the 

matrices associated to basic and non-basic variables respectively. Thus to obtain a better point of 

induced region IR, basis Ai should include at least one vector with indices j R and jz <0. If there is no 
basis current best point of IR is global optimum to the problem. Now for Ai to be feasible for problem 
PR(Bi-1), artificial variables remaining in the optimal basis of phase 1 are removed by placing variables 
x j , 1 2... ij V V V   with 

'z j in the basis. As Phase 1 has been concluded and 
'z j 0 

1 2 1... ij V V V    , basis Ai  will be feasible only if it has at least one vector whose index 1j V Ti i   and 
' 0z j  . 

Now if we have previously built sets
1 2
1 1 1, ... iC C C ,let 1E denote the set of all sets 1C . If we have 

previously built sets
1 2
2 2 2, ... iC C C , let 2E  denote the set of all sets 2C . Likewise 3E is formed. Thus 

1 2 3, ,E E E  are sets of indices. Then, in order to select a set of vectors 
1 2

1 1 1, ,... j
i i iB B B   of Ai that can form a 

basis of interest, we will have to guarantee that the sets of indices of these vectors includes at least one 
index from each element of E1, at least one index from each element of E2, and not all indices from each 
element of E3. Hence, to find this set of indices we suggest solving in wj the following system. 
 

P2: 

11,
1,

0,j j j
j

j C
w

otherwise
 


  




 
 

1 1C E  
 

21,
1,

0,j j j
j

j C
w

otherwise
 


  




 
 

2 2C E  
 

31,
1,

0,j j j j
j j

j C
w

otherwise
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3 3C E  

 

j
j
w m

 
 

 0,1 ,j iw j V   
 

The required set will be constituted by vectors of Ai with indices j such that the corresponding 
jw =1. 

On the other hand, note that the following linear problem provides a lower bound on the 
objective function of problem MLLFP. 

 
1 2

1 2:  .  ... n
R nP Min k x k x k x     s.t.   1 2, ... nx x x S  

 
Therefore, if in some step of the algorithm a point of the inducible region is found whose 

objective function value equals the optimum of PR, then this point is a global optimum of MLLFP. 
However, in general, the lower bound provided by PR will be very far from the optimum of MLLFP. 
 
The Algorithm 
Step 0  

i. Solve problem PR. 
ii. If PR is not feasible neither is MLLFP, Stop. 

iii. Set i=i+1 

iv. Let  ' ' '
1 2, ... nx x x

be an optimal solution of PR. Solve  ' ' '
1 2 1, ... iP x x x   using the parametric approach. 

Let  ' '
2 ... nx x

be its optimal solution and Bi be its optimal basis. 

v. If 
'
ix = ix  ,Stop.  ' ' '

1 2, ... nx x x
 is a global optimum and is the current best point of (IR). 

 
Step 1. 

i. Given the basis Bi  solve PR(Bi) using the two-phase method. 
ii. If PR(Bi) is feasible, and any of its optimal solutions verify constraints (2) and (3), then go to step 

2. 
iii. If PR(Bi) is feasible, and none of its optimal solutions verify constraints (2) and (3), then go to 

step 3. 
iv. If PR(Bi) is not feasible, then go to step 4. 

 
Step2 

i. Compare this optimal solution with the current best point of (IR) and update, if necessary, the 
latter. 

ii.  Compute C1. 
iii. If C1=0. Stop. The current best point of (IR) is a global optimum to MLLFP. 

iv. Set E1=  1 1 ,E C then go to step 5. 
  Step 3.  

Compute C3. Set   3 3 3E E C  , then go to step 5. 
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Step 4. 

          Compute C2. Set E2=  2 2E C . 
 
Step 5. 

i. Solve P2. 
ii. If P2 is not feasible, stop. The current best point of (IR) is a global optimum to MLLFP. 

iii. Let D be the constructed set of vectors. If rank (D) = m, then go to step 6, otherwise go to step 
7. 

 
Step 6. 

i. Set Bi=D. Compute 
1, u
i i     by checking condition (1). 

ii. If condition (1) is not verified, compute C3. Set  3 3 3E E C   and then go to step 5. 
Otherwise go to step 1. 

 
Step 7. 

i. Let rank (D)=k. Let D’ be the matrix of independent vectors of D. Set D=D’. Check the existence of 
a set G of (m-k) vectors of Ai so that Bi=[D,G] is a basis from Ai verifying conditions given by sets 

E1,E2 and E3 and condition (1) for 
1, u

i i i      . 

ii. If it exists, then go to step 1. Otherwise compute C3, Set  3 3 3E E C   and Go to step 5. 
 
Step 8. 

After getting an optimal solution for a particular level go to step 0.3 and repeat this procedure 
until i=n. At last, we get the optimal solution for the given problem. 
 
5. Numerical Example 
 For illustration of the proposed methodology, we consider the following example: 
 

 1 2
1 1 2 3 4 5 6 7( , )

. 6 2 2 20 2 8 6
x x
Min f x x x x x x x       

 
 
Where 
 

3 4

1 2 3 4 5 6 7
2( , )

1 3 4 5 6 7

(3 2 2 4 2 2 2 6 ).
(8 4 2 2 6 4 8 )x x

x x x x x x xMin f
x x x x x x

      


       
 

5 10

1 2 3 4 5 6 7
2( ,... )

1 2 4 5 6 7

(1 3 5 4 5 ).
(5 2 2 3 2 2 7 )x x

x x x x x x xMin f
x x x x x x

      


       
 

s.t.  3 4 5 6 7 8 1x x x x x x        

 1 3 4 5 6 7 92 2 2 1x x x x x x x        
 2 3 4 5 6 7 102 2 2 1x x x x x x x        
 

              0,ix         i=1,2,3…10. 
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Solution 

The optimal solution to problem PR is = (0,0,2,2,1,0,0,0,0,0). The optimal value of the objective 

function is -38, which constitutes a lower bound on the objective function of P1.By fixing
'
1x = (0,0) and 

solving the fractional problem of the second level we get the optimal solution 
'
2x = (0,0,0,1,0,0,0,2) Since

'
2x  ≠ 2x , next we go to step 1. 

The current best point of (IR) is 1f  8, Basis B1 is given by vectors with indices 4,6,10 will be 

the first analyzed basis 
1
1 1, u    = [-4/5, 1/3]. 

 
After the first iteration we get the optimal solution (0,1,0,0,0,1,0,0,0,0). 
 
All the results are shown in the following tables: 
 

Table 1:  Optimal tableaus of Problems RP ( 1
iB ) 

                     Basic Variables       Value      1x    2x    3x     4x    5x    6x    7x    8x     9x    10x    1a    2a            

Iteration 1.            6x    1         -2      0    -1      0     3      1     0      2      -1      0 

      4x    0           2      0    0       1    -2     0     1      -1       1     0  

     2x                  1           0      1    1/2    0     0     0    -1/2   1/2     0    1/2 
                   5      0    11     0   -66    0     13   -35    28     1 

(0,1,0,0,0,1,0,0,0,0)   ( IR) 1f =6. 

Iteration 2.            5x                     1   0       0    -1       1      1       1      1       1        0      0 

  1x                    1         1       0      1     3/2      0       1   3/2     1/2    1/2      0  

  2x                    1         0       1    1/2       0      0       0  -1/2    1/2       0    1/2 
                  0       0       -5      -9      0     16      4      6        3      1 

(1,1,0,0,1,0,0,0,0,0)   ( IR) 1f = -10                                                                                   

Iteration 3.       RP (
3
1B ) is not feasible. 

1a                          ½       -1       0     -1/2       0     3/2    ½       0      1     -1/2      0      1 

  7x                        1/2        1        0      -1/2       1    -1/2   1/2     1     0     1/2      0      0  

  2x                           1       0         1       1/2      1/2     -1     0       0      0     1/2    1/2     0 
  _________________________________________________________________________________ 
 
 
 
 

Table 2: Summary of the algorithm 
 
          C1                 C2          C3             D is formed by vectors with indices        Interval of   

  Iter. 1                    {5,8}                                                         {5,6,8}                                      1/ 3,   
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  Iter. 2                    {3,4}                                                        {3,4,7}                                      3 / 4,   
___________________________________________________________________________ 
 

Table 3: Final table showing infeasibility of third level 
 

Basic Variables               Value   5x    6x     7x     8x      9x     10x      1a              
 

      8x                                     0    0     0    -1     1       0      1  0 

      1a       0   0    -2    -4     0            -1            1                      1 

     5x                   1          1      1      2          0         0          -1               0 
   0               2      4           0       1      0             0 
 
 
CONCLUSION 

In this study, we proposed a basis examination method to find the global optima of the multi-
level linear/ linear fractional programming problem (MLLFP) in which the objective function of the first 
level is linear and the objective functions of other levels are linear fractional and the feasible region is a 
polyhedron. We conclude that: 

 Under the usual assumptions there is an extreme point of the polyhedron S which solves the 
given problem. 

 One of its most outstanding features is that this implicit search is only made among basis of the 
technological coefficient submatrix corresponding to variables of each level one by one. 

  The inducible region of MLLFP is formed by the union of connected faces of the feasible region 
and optimal solution to MLLFP occurs at an extreme point of polyhedron S. 
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