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ABSTRACT 

This study deals with single-vendor, single-buyer inventory control system with imper-fect production 
under individual management. The defective rate is a random variable. The model is developed for imperfect 
production process with perfect and partial infor-mation about the lead-time demand distribution. Here we 
first assume that the lead-time demand follows a normal distribution and then this conjecture is remove by 
the assump-tion that the first and second moments of the probability distribution of lead-time demand are 
known. These models are mixture production inventory models with backorder and lost sale in which the 
lead-time, order quantity are viewed as decision variables. For each case an algorithm is developed to find 
the pareto optimal ordering policy for the buyer and hence the production policy for the vendor. Some 
mathematical properties of the profit functions are analytically derived. Some numerical examples are also 
presented to illustrate the results of the proposed models. 
 
KEYWORDS: Inventory, Lead-time, Backorder rate, Minimax distribution-free procedure, Proportion of 
defectives. 
 
1.INTRODUCTION 
1.1 Background 

In global market, vendor-buyer production inventory model is more useful than one side optimal 
strategy (e.g., a buyer or a vendor). In this area Goyal [1] give an idea about joint optimization for vendor 
and buyer. Goyal [2] further suggest that the vendor economic production quantity should be an integer 
multiple of buyer purchase quantity. Ha and Kim [3] extended the concept and proposed an integrated lot-
splitting model of facilitating multiple shipments in small lots. Huang [4] developed an inventory model for 
items with imperfect quantity. 

When demand during the cycle period is not deterministic but is stochastic, then lead time takes an 
important role about optimization of an inventory model. According to Tersine [5] lead time usually consists 
of the following components: order preparation, order transit, supplier lead time, delivery time and setup 
time. Most of the authors deal with inventory lead time as a control variable. Liao and Shyu [6] first 
considered lead time as a variable and controlled it by paying extra crashing cost. This model has been 
extended by Ben-Daya and Raouf [7], Ouyang et al. [8], Ouyang and Wu [9]. Although, all of them considered 
the lead time reduction cost as a function of the number of order only but it is not so because Pan and Hsiao 
[10] proposed that the transportation cost, the overtime wages and extra inventory holding cost for 
expedition of delivery are all proportional to the item order quantities rushed. 

Now-a-day multi-objective production inventory problem is a real phenomenon but there is only a 
few research papers dealing with multi-objective production inventory problem. Roy and Maiti [11] 
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formulated and solved a multi-objective inventory model of deteriorating items in fuzzy environment. 
Recently Mahapatra and Maiti [12] have developed an inventory model for breakable item with uncertain 
preparation time. They [13] have also formulated and solved a production inventory model for deteriorating 
items with imperfect preparation time for pro-duction in finite time horizon. But as far as knowledge none 
has consider multi-objective production inventory problem in stochastic environment for defective items. 

 
1.2 ORGANIZATION OF THE PAPER 

In this paper we are considering the single vendor, single buyer production inventory model in 
individual management system. Here percentage of defectiveness follows uniform distribution and the poor 
quantity items detected in screening process of a lot at the buyer are sold at a discount price. We developed 
two models, at first assuming that lead-time demand follows a normal distribution, and then remove this 
assumption by only assuming that the first and second moments of the probability distribution of lead-time 
demand are known. These models are mixture production inventory model with backorder and lost sale in 
which the lead-time, order quantity are viewed as a decision variables. Here backorder ratio and setup cost 
for buyer depend on lead-time. For each model, an effective iterative procedure is developed to determine 
the optimal policy, and numerical examples are used to illustrate the results. Some mathematical properties 
of the profit functions are also analytically derived. 

 
2.PRELIMINARIES 
Multi-objective Optimization Problem: 
Definition 1. A multi-objective optimization problem is of the form 
maximize {f1(x), f2(x), · · · , fk(x)} 

subject to x ∈ X; 

where fi(x), i = 1, 2, ..., k are k objective functions and X is the feasible set of constraints, i.e.,   
X = {x : gj(x) ≤ 0, (j = 1, 2, ...., l) 
hr(x) = 0, (r = 1, 2, ...., m) 
and  x = (x1, x2, ...., xn)T } 
It is said to be concave if all the objective functions are concave and the feasible region is convex. 

Definition 2. A vector x∗ ∈ X is Pareto optimal solution of the above multi-objective problem if there does not 

exist another decision vector x ∈ X such that fi(x) ≥ fi(x∗) for all 𝑖 = 1,2,…… . . , 𝑘 and fj(x) < fj(x∗) for at least 

one index j. 
Theorem 1. Let the multi-objective optimization problem be concave. Then every locally Pareto optimal 
solution is also globally Pareto optimal. [The proof is similar to Miettinen [14] for minimization problem]. 
 
3.NOTATION AND ASSUMPTIONS 
To develop the proposed models, adopting the following notation and assumptions 
 
3.1Notations 
m      number of shipment from vendor to buyer. 
x+          maximum value of x and 0, i.e., x+= max{x,0}. 
E(.)        mathematical expectation. 
φ(.)       probability density function of the standard normal distribution. 
Φ(.)      cumulative distribution function of standard normal distribution. 
cs           per unit maximum retail price (M.R.P.) of non-defective items. 
 
For Vendor 
     K         production rate per unit time. 
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     Av0      Set-up cost. 
     cp         per unit production cost, cp = µcs, where 0 < µ < 1. 
     hv         holding cost per unit per unit time. 
 
For buyer 
      D       average demand per unit time of non-defective items. 
      L        length of lead time (decision variable). 
Ab(L)      ordering cost per order which is a linear function of L and 0 < Ab(L) ≤ Ab0, Ab0 is the upper bound of 
ordering cost.  
 β(L)         backorder ratio, is a non-linear function of L. 
     q          stock-out probability. 
    hb   holding cost per unit per unit time, which is same for defective and non-defective item. 
     P          random variable representing the percentage rate of defective items received. 
    rs           the screening rate rs > D. 
   Q          order quantity ( decision variable). 
   R           reorder point. 
   Π          fixed penalty cost per unit. 
   Π0            marginal profit per unit. 
   cpr          per unit purchasing cost, cpr = λcs, where 0 < µ < λ < 1. 
   csc         the screening cost per unit. 
   cds            the selling price of defective items per unit, cds < cp . 
 
3.2Assumptions 
1.There is single-vendor and single-buyer for single product. 
2. Shortages allowed and backlogged partially. 
3. The buyer’s demand X during the lead is normally distributed with mean DL = DL and standard 

deviation𝜎𝐿 = 𝜎 𝐿, then the probability density function (p.d.f.) of X is 

𝑓 𝑥 =
1

 2𝜋𝜎𝐿
𝑒𝑥𝑝  −

 𝑥−𝐷𝐿  
2

2𝜎𝐿
2

 , −∞ < 𝑥 < ∞                                                            (1) 

where σ denote the standard deviation of the demand per unit time for buyer’s. 
4.Each lot contains percentage defectiveness, P, which is uniformly distributed with p.d.f. 

𝑔 𝑝 =
1

𝑏−𝑎
, 𝑎 ≤ 𝑝 ≤ 𝑏                                                                                            (2) 

         =      0     ,        elsewhere, 
having the interval *a,b+ as the spectrum, where 0 ≤ a < b < 1. 
5.Buyer’s inventory system is continuously reviewed. Replenishment are made whenever the buyer’s 
inventory level falls to the reorder point R. 
6.The reorder point of the buyer’s , R is the expected demand during lead-time plus safety stock (SS), and SS 

= k×(standard deviation of lead-time demand), i.e., 𝑅 = 𝐷𝐿 + 𝑘𝜎 𝐿, where k is the safety factor which is 
treated as known/unknown parameter and satisfying P(X > R) = P (Z > k) = q, Z represents the standard 
normal random variable, and q represents the allowable stock-out probability during lead-time L. 
7.The lead time L has n mutually independent components each having a different crashing cost for reducing 
lead time. The j-th component has a minimum duration aj and normal duration bj and a crashing cost per 
unit time cj. Furthermore, we assume that c1 ≤ c2 ≤….≤ 𝑐𝑛 . 
8.The components of lead time are crashed one at a time starting with the component of least ci and so on. 
9.Let 𝐿0 =  𝑏𝑗

𝑛
𝑗=1  and Lr be the length of lead-time for buyer’s with components 1, 2, 3,……, r crashed to 

their minimum duration, then Lr can be expressed as 𝐿𝑟 =  𝑏𝑗 −   𝑏𝑗 − 𝑎𝑗  ,𝑟
𝑗 =1

𝑛
𝑗 =1  r=1,2,…..,n. The lead-time 

crashing cost per cycle for buyer’s is C(L) for a given L ∈ [Lr, Lr−1] is given by 

 𝐶 𝐿 = 𝑐𝑟 𝐿𝑟−1 − 𝐿 +  𝑐𝑗 𝑏𝑗 − 𝑎𝑗  
𝑟−1
𝑗=1 𝑎𝑛𝑑 𝐶 𝐿0 = 0                                              (3) 
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10.The backorder ratio β(L) for the buyer’s is a non-linear function of L through E(X −R)+ defined as 
 β(L) = 1/*1 + τ E(X − R)+]                                                                                             (4) 
which is smaller for larger expected shortage quantity, where τ is positive constant. 
11.Ordering cost reduction and lead time are related directly as 
 

𝐿0 − 𝐿

𝐿0
= 𝜂

𝐴𝑏0 − 𝐴𝑏

𝐴𝑏0
 

 
where η(> 0) is a constant scaling parameter to describe the linear relationship between percentage 
reduction in lead time and ordering cost. Then ordering cost Ab is linear function of lead time L, i.e., Ab(L) = u 
+ vL                                                                                  (5) 

where 𝑢 =  1 −
1

𝜂
 𝐴𝑏0 𝑎𝑛𝑑 𝑣 =

𝐴𝑏0

𝜂𝐿0
. This function has been utilized in many researches (e.g., Chiu [15], Chen 

et al. [16] and Chang et al. [17]). 
 
4.MODEL OF INDIVIDUAL MANAGEMENT 
4.1Model when Lead-time demand is normally distributed 

In this vendor-buyer problem of defective items, when buyer orders a lot of size Q then vendor 
produces mQ at one set-up in order to reduce its set-up cost and as soon as buyers lot size Q produced, the 
lot is delivered to buyer to reduce the inventory holding cost. The vendor do not conduct any screening 
process. On the other hand, after purchasing a lot from vendor at price (cpr) buyer start screening and as 
soon as possible 100% inspection process of the lot is conducted at a fixed cost per unit (csc) and at a rate (rs) 
greater than that of the demand rate. When screening process is completed the defective items (PQ units) 
are sold as a single batch at a discount price. To avoid shortages within the screening period, P is restricted 

as 𝑃 ≤ 1 −
𝐷

𝑟𝑠
. Then the length of one cycle for vendor and buyer are respectively

𝑚 1−𝑃 𝑄

𝐷
 and 

 1−𝑃 𝑄

𝐷
. Since 

the buyer’s inventory system is continuously reviewed, the buyer’s place his order when his on hand 
inventory reaches a reorder point R. The inventory profile for the vendor and buyer is depicted in Figure-1. 
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When order is placed the lead time count is started, during this period the demand X is a random 
variable which is normally distributed and whose expected value is E(X) = DL and variance var(X) = E*X − E(X)+2 
= σL

2. So the accumulated shortage amount just before the arrival of next lot is also a random variable X − R 
(denoting it as Y) whose expected value is 

 

𝐸 𝑌 + = 𝐸 𝑋 − 𝑅 + =   𝑥 − 𝑅 𝑓 𝑥 𝑑𝑥
∞

𝑅
= 𝜎 𝐿𝜓 𝑘 ,                                               (6) 

 
where ψ(k) = φ(k) − k*1 − Φ(k)+ > 0. Therefore, the backorder and lost sale amount in each cycle are 

respectively βY and (1 − β)Y with expected value βE(Y ) and (1 − β)E(Y ). In this model the average inventory 
for buyers is calculated by summing the average inventory for non defective and defective item. For the 
buyer’s model the total cost per unit time is as follows:  

TCUb(Q, L, R) = ordering cost + holding cost + shortage cost + screening cost + purchasing cost + lead 
time crashing cost,  

 

=
𝐴𝑏  𝐿 𝐷

 1−𝑃 𝑄
+ 𝑕𝑏   

 1−𝑃 𝑄

2
+ 𝑅 − 𝐷𝐿 +  1 − 𝛽 𝑌 +

𝐷𝑄𝑃

𝑟𝑠 1−𝑃 
  +

𝐷

 1−𝑃 𝑄
 Π +  1 − 𝛽 Π0 𝑌 

+ 
𝑐𝑠𝑐𝐷

 1−𝑃 
+

𝑐𝑝𝑟 𝐷

 1−𝑃 
+

𝐷

 1−𝑃 𝑄
𝐶 𝐿 ,  

 

where C(L), β *= β(L)+, Ab(L) are calculated form (3), (4), (5) respectively and 𝑅 = 𝐷𝐿 + 𝑘𝜎 𝐿. Since 
the random variables P and X are mutually independent, therefore, the expected value of T CUb(Q, L; k) is  

 

TECUb(Q, L; k) =𝐷  
𝐴𝑏  𝐿 

𝑄
+  Π +  1 − 𝛽 Π0 

𝐸 𝑌 +

𝑄
+ 𝑐𝑠𝑐 + 𝜆𝑐𝑠 +

𝐶 𝐿 

𝑄
 𝐸 1/ 1 − 𝑃   

 

+𝑕𝑏  
𝑄

2
𝐸 1 − 𝑃 + 𝑘𝜎 𝐿 +  1 − 𝛽 𝐸(𝑌)+ +

𝑕𝑏𝐷𝑄

𝑟𝑠
𝐸 1/ 1 − 𝑃                                      (7) 

 
The total expected revenue collection from sales of good quantity and defective quantity items per 

unit time is calculated as 
 

TERUb = cdsDE *P/(1 − P )+ + csD                                                                                      (8) 
 

The buyer’s total expected profit per unit time, TEPUb(Q, L; k), is determined by the total expected 
revenue per unit time, TERUb, less the total expected cost per unit time, TECUb(Q, L; k). The equation can be 
formulated as 

 
TEPUb(Q, L; k) = TERUb − TECUb(Q, L; k), 
 

= 𝑐𝑠𝐷 + 𝐷  𝑐𝑑𝑠 −
𝑕𝑏𝑄

𝑟𝑠
 𝐸4 𝑎, 𝑏 − 𝐷  

𝐴𝑏 𝐿 

𝑄
+

Π𝐹 𝐿 

𝜏𝑄
+ 𝑐𝑠𝑐 + 𝜆𝑐𝑠 +

𝐶 𝐿 

𝑄
 𝐸3(𝑎, 𝑏) 

 

−
𝐹(𝐿)2

𝜏 1+𝐹(𝐿) 
 

Π0𝐷

𝑄
𝐸3 𝑎, 𝑏 + 𝑕𝑏  − 𝑕𝑏  

𝑄

2
𝐸2 𝑎, 𝑏 + 𝑘𝜎 𝐿                                             (9) 

 

where, F (L) = τ E(Y )+ = τ σ  𝐿ψ(k) and the calculations to evaluate E2(a, b), E3(a, b) and E4(a, b) are 
given in Appendix-A. 

In the production period, when the first Q units have been produced, the vendor delivers 

them to buyer, after that the vendor will make the delivery on an average of every 
 1−𝑃 𝑄

𝐷
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unit time until the inventory level diminishes to zero. So the total inventory of the vendor for a single cycle 
can be calculated as follows: 

𝑚𝑄   
𝑄

𝐾
+  𝑚 − 1 

 1 − 𝑃 𝑄

𝐷
 −

𝑚2𝑄2

2𝐾
 −  

 1 − 𝑃 𝑄

𝐷
 1 + 2 + ⋯……+ (𝑚 − 1)   

 

=
𝑚 1−𝑃 𝑄2

2𝐷
 

𝐷

 1−𝑃 𝐾
 2 −𝑚 + 𝑚 − 1 . 

 
Hence the vendor’s total cost per unit time is as follows: 
TCUv(Q; m) = setup cost + holding cost + production cost, 
 

=
𝐴𝑣0𝐷

𝑚 1−𝑃 𝑄
+ 𝑕𝑣

𝑄

2
 

𝐷

 1−𝑃 𝐾
 2 −𝑚 + 𝑚 − 1 +

𝑐𝑝𝐷

 1−𝑃 
. 

 
The expected value of TCUv(Q) is 
 

TECUv(Q; m) = 𝐷  
𝐴𝑣0

𝑚𝑄
+

 2−𝑚 𝑕𝑣𝑄

2𝐾
+ 𝜇𝑐𝑠 𝐸 1/ 1 − 𝑃  +

𝑕𝑣𝑄

2
 𝑚 − 1 .                        (10) 

 
Also the vendor’s total expected revenue collection per unit time from selling of the quantity mQ to 

buyer is given by 
 

TERUv = λcsDE *1/(1 − P )+                                                                                                (11) 
 
Therefore, the expected profit of the vendor per unit time, TEPUv(Q, m), is formulated as follows 
 
TEPUv(Q; m) = TERUv − TECUv(Q; m) 
 

= 𝐷   𝜆 − 𝜇 𝑐𝑠 −
𝐴𝑣0

𝑚𝑄
−

 2−𝑚 𝑕𝑣𝑄

2𝐾
 𝐸3 𝑎, 𝑏 −

𝑕𝑣𝑄

2
 𝑚 − 1 .                                               (12) 

 
So, if the system is treated as a individual management then the above model is formulated as a 

multi-objective problem, which is given by 
 

Maximize {TEPUb(Q, L; k), TEPUv(Q; m)}                                                                     (13) 
 
subject to, 0 < Ab ≤ Ab0, 
 

Several methods have been developed for solving this type of multi objective optimization problem. 
Here, Weighted Sum Method given in Miettinen [14] is used to solve the multi objective problem (13). 

 
Maximize  F1{(Q, L; k, m)}                                                                                            (14) 
 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 < 𝐴𝑏 ≤ 𝐴𝑏0. 
 
and w1 + w2 = 1,       w1, w2 ≥ 0, 
 
where F1(Q, L; k, m) = w1TEPUb(Q, L; k) + w2TEPUv(Q; m). 
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Theorem 2. The solution of the weighted sum problem (14) is weakly Pareto optimal. Theorem 3. The 
solution of the weighted sum problem (14) is Pareto optimal if the weighting coefficients are positive, that is 
wi > 0 for all i = 1, 2. 
For the proof of the Theorems 2 and  Theorems 3, refer to Miettinen [14]. 
Proposition 1. For fixed Q, and known k, the maximum value of TEPUb(Q, L; k) will occur at the end points of 
the interval [Lr, Lr−1]. 
Proof. The first and second order partial derivative with respect to L of TEPUb(Q, L; k) for fixed Q and for 
known k are respectively  
 

𝜕𝑇𝐸𝑃𝑈𝑏(𝑄, 𝐿; 𝑘)

𝜕𝐿
=

𝐷

𝑄
 𝑐𝑟 −

𝐴𝑏0

𝜂𝐿0
 𝐸3 𝑎, 𝑏 −

 2 + 𝐹(𝐿) 𝐹(𝐿)2

2𝜏𝐿 1 + 𝐹(𝐿) 2
 
Π0𝐷

𝑄
𝐸3 𝑎, 𝑏 + 𝑕𝑏  

 
 

−
Π𝐷𝐹(𝐿)

2𝜏𝐿𝑄
𝐸3 𝑎, 𝑏 −

1

2
𝑕𝑏𝑘𝜎𝐿

−1

2 . 

 
 

and 
𝜕2𝑇𝐸𝑃𝑈𝑏(𝑄,𝐿;𝑘)

𝜕𝐿2 =
 3+𝐹(𝐿) [𝐹 𝐿 ]3

𝜏 1+𝐹(𝐿) 3
 

Π0𝐷

𝑄
𝐸3 𝑎, 𝑏 + 𝑕𝑏  +

Π𝐷𝐹(𝐿)

4𝜏𝐿2𝑄
𝐸3 𝑎, 𝑏 +

1

4
𝑘𝜎𝑕𝑏𝐿

−3

2 .  

 
 

Since, 
𝜕2𝑇𝐸𝑃𝑈𝑏 (𝑄,𝐿;𝑘)

𝜕𝐿2 > 0 for fixed Q, and known k, therefore, TEPUb(Q, L; k) convex in L ∈ [Lr, Lr−1]. 

Hence for fixed Q, and for known k, the maximum value of T EPUb(Q, L; k) occur at the end points of the 
interval [Lr, Lr−1]. 

 
Proposition 2. For each Lr(r = 1, 2, ..., n), fixed m and known parametric value of k, the multi objective 
problem given in (13) is concave in Q. 
 
Proof. For each Lr(r = 1, 2, ..., n), fixed m and known k the second order partial derivative of TEPUb(Q, Lr; k) 
and TEPUv(Q; m) with respect to Q are respectively 
 
𝜕2𝑇𝐸𝑃𝑈𝑏 (𝑄,𝐿𝑟 ;𝑘)

𝜕𝑄2 = −
2𝐷

𝑄3
 𝐴𝑏 𝐿𝑟 +

Π𝐹(𝐿𝑟)

𝜏
+ 𝐶(𝐿𝑟) 𝐸3 𝑎, 𝑏 −

𝐹(𝐿𝑟)2

𝜏 1+𝐹(𝐿𝑟 ) 
 

2Π0𝐷

𝑄3 𝐸3 𝑎, 𝑏  ,    (15) 

 
 

and 
𝜕2𝑇𝐸𝑃𝑈𝑣(𝑄;𝑚)

𝜕𝑄2 = −
2𝐷𝐴𝑣0

𝑚𝑄3 𝐸3 𝑎, 𝑏 .                                                                                   (16) 

 
 

From (15) and (16) it is clear that both the 
𝜕2𝑇𝐸𝑃𝑈𝑏 (𝑄,𝐿𝑟 ;𝑘)

𝜕𝑄2  and 
𝜕2𝑇𝐸𝑃𝑈𝑣(𝑄;𝑚)

𝜕𝑄2  are negative. So TEPUb(Q, 

Lr; k) and TEPUv(Q; m) both are concave in Q for known k and m and hence the the multi-objective problem 
given in (13) is concave in Q for each Lr(r = 1, 2, ..., n), fixed m and known k ( From the Definition-1 of multi-
objective optimization problem given in Section-2 ). 

 
Proposition 3.The multi-objective problem given in (13) possesses global Pareto-optimal solutions. 
Proof.By Proposition-2, we have, the multi objective maximization problem (13) is concave. So it possesses 
global pareto-optimal solutions (following Theorem-1 of Section-2).  

Proposition 4. Global pareto-optimal solutions are obtained from 
𝜕𝐹1(𝑄,𝐿𝑟 ;𝑘,𝑚)

𝜕𝑄
= 0 for fixed m and known k. 
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Proof. If Qr1 and Qr2 be the solution of the equations 
𝜕𝑇𝐸𝑃𝑈𝑏 (𝑄,𝐿𝑟 ;𝑘)

𝜕𝑄
= 0 𝑎𝑛𝑑 

𝜕𝑇𝐸𝑃𝑈𝑣(𝑄;𝑚)

𝜕𝑄
= 0 

respectively for each Lr(r = 1, 2, ..., n), fixed m and known k, then the solutions Qr1 and Qr2 gives separately 
the maximum value of TEPUb(Q, Lr; k) and TEPUv(Q; m) but they are not the pareto-optimal solution of the 
multi-objective problem (13). Because of the contradiction and possible in-commensurability of the 
objective functions, it is not possible to find a single solution that would be for all the objectives 
simultaneously. 

There exist a compromise solution 𝑄𝑟 =  
𝐾1(𝐿𝑟 ,𝑘 ,𝑚)

𝐾2 (𝑚)
  which is determined by solving 

 
𝜕𝐹1(𝑄, 𝐿𝑟 ; 𝑘,𝑚)

𝜕𝑄
= 0 

 
for Q, the expression for K1(Lr, k, m) and K2(m) are given in Appendix-A. By Theorem-3, Qr is a 

pareto-optimal solution of the multi objective problem (13) for each Lr(r = 1, 2, ..., n), fixed m and known k. 
The Proposition-3 says that this pareto-optimal solution must be Global pareto-optimal. 

 
4.2 Model when Lead-time demand is distribution free 

It is not necessary that the lead-time demand must be a normally distributed. We relax the 
assumption about the normal distribution of the lead time demand and only assume that the lead time 

demand has a d.f. F of X belong to the class Γ of d.f.’s with finite mean DL and standard deviation 𝜎 𝐿. Then 
the problems (13) is reduces to 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 minimize𝐹∈Γ 𝑇𝐸𝑃𝑈𝑏 𝑄, 𝐿; 𝑘 , minimize𝐹∈Γ 𝑇𝐸𝑃𝑈𝑣 𝑄;𝑚                           (17) 
 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 < 𝐴𝑏 ≤ 𝐴𝑏0. 
 
Moreover, Gallego and Moon [18] already proved that for any 𝐹 ∈ Γ 
 

𝐸 𝑋 = 𝐸(𝑋 − 𝑅)+ ≤
1

2
  𝜎2𝐿 +  𝑅 − 𝐷𝐿 

2 −  𝑅 − 𝐷𝐿  . 

                                 =
1

2
𝜎 𝐿  1 + 𝑘2 − 𝑘 ,                                                                      (18) 

 

because 𝑅 = 𝐷𝐿 + 𝑘𝜎 𝐿. Then, as per assumption (10) and inequality (18), we have 
 

𝛽 ≥  1 +
1

2
𝜏𝜎 𝐿  1 + 𝑘2 − 𝑘  

−1
                                                                                    (19) 

 
Therefore, the problem (17) is reduces to 
 
maximize𝑄,𝐿 𝑇𝐸𝑃𝑈𝑏

          𝑄, 𝐿; 𝑘 , 𝑇𝐸𝑃𝑈𝑣
          𝑄;𝑚                                                                     (20) 

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 < 𝐴𝑏 ≤ 𝐴𝑏0 , 
 
where, 𝑇𝐸𝑃𝑈𝑏

          𝑄, 𝐿; 𝑘 = minimize𝐹∈Γ 𝑇𝐸𝑃𝑈𝑏 𝑄, 𝐿; 𝑘  
 

= 𝑐𝑠𝐷 + 𝐷 𝑐𝑑𝑠 −
𝑕𝑏𝑄

𝑟𝑠
 𝐸4 𝑎, 𝑏 − 𝐷  

𝐴𝑏(𝐿)

𝑄
+

Π𝐺(𝐿)

𝜏𝑄
+ 𝑐𝑠𝑐 + 𝜆𝑐𝑠 +

𝐶(𝐿)

𝑄
 𝐸3 𝑎, 𝑏  
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−
𝐺(𝐿)2

𝜏 1+𝐺(𝐿) 
 

Π0𝐷

𝑄
𝐸3 𝑎, 𝑏 + 𝑕𝑏  − 𝑕𝑏  

𝑄

2
𝐸2 𝑎, 𝑏 + 𝑘𝜎 𝐿                                                  (21) 

 
 
𝑇𝐸𝑃𝑈𝑣
          𝑄;𝑚 = minimize𝐹∈Γ 𝑇𝐸𝑃𝑈𝑣 𝑄;𝑚 . 
 

= 𝐷   𝜆 − 𝜇 𝑐𝑠 −
𝐴𝑣0

𝑚𝑄
−

 2−𝑚 𝑕𝑣𝑄

2𝐾
 𝐸3 𝑎, 𝑏 −

𝑕𝑣𝑄

2
 𝑚 − 1 ,                                               (22) 

 

and 𝐺 𝐿 =
𝜏

2
𝜎 𝐿  1 + 𝑘2 − 𝑘 . 

 
The corresponding single objective problem is 
 
Maximize  {F2(Q, L; k, m)}                                                                                           (23) 
 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 < 𝐴𝑏 ≤ 𝐴𝑏0. 
𝑎𝑛𝑑 𝑣1 + 𝑣2 = 1, 𝑣1 , 𝑣2 ≥ 0. 
where F2(Q, L; k, m) = v1TEPUb(Q, L; k) + v2TEPUv(Q; m) 
 
Remark 1. The multi-objective problem (20) satisfy all the Proposition (Proposition-1, Proposition-2, 
Proposition-3) of the multi-objective problem (13). 
Proposition 5. (Ouyang and Wu [19]) If X is the demand during lead time which has a p.d.f fX (x) with finite 

mean DL and standard deviation 𝜎 𝐿(> 0), then for any real number d > 0 
 

𝑃 𝑋 > 𝑑 ≤
𝜎2𝐿

𝜎2𝐿+ 𝑑−𝐷𝐿  
2.                                                                                                    (24) 

 

Taking 𝑑 = 𝑅 = 𝐷𝐿 + 𝑘𝜎 𝐿 in inequality (20), we get 
 

𝑃 𝑋 > 𝑅 ≤
1

1+𝑘2.                                                                                                                (25) 

 
Further, it is assume that the allowable stock out probability q[= P (X > R)] during lead time is given, 

then inequations (25) gives 0 ≤ 𝑘 ≤   1/𝑞 − 1. 
The following algorithmic procedures was developed to identify global pareto-optimal solutions for 

(Q, L, m) when the demand during lead time is normally distributed (Model-4.1.1) and for (Q, L, k, m) when 
demand during lead time is distribution free ( Model-4.1.2). 

 
Algorithm 1. (For Model 4.1.1) 
Step 1: Set m = 1. 
 
Step 2: For each Lr perform (a) and (b), r=1, 2, ..., n. 

(a). For known k find ψ(k) from normal distribution table, using this value of ψ(k) compute 𝑄𝑟 =  
𝐾1 (𝐿𝑟 ,𝑘,𝑚 )

𝐾2(𝑚)
, 

where 𝐾1 (𝐿𝑟 , 𝑘, 𝑚) and 𝐾2 (𝑚) are given in (26) and (27) in Appendix-A respectively. 
(b). Find corresponding F1(Qr, Lr; k, m), where F1(Qr, Lr; k, m) = w1TEPUb(Qr, Lr; k) + w2TEPUv(Qr; m), w1 + w2 = 
1 and w1, w2 ≥ 0. 
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Step 3:Find 𝐹1 𝑄∗, 𝐿∗; 𝑘,𝑚 = maximize𝑟=1,2,….,𝑛 𝐹
1 𝑄𝑟 , 𝐿𝑟 ; 𝑘,𝑚 ,then  𝑄∗ , 𝐿∗  is the pareto-optimal 

solution and 𝑇𝐸𝑃𝑈𝑏 𝑄
∗, 𝐿∗; 𝑘 , 𝑇𝐸𝑃𝑈𝑣(𝑄∗;𝑚) are compromise maximum value of the objective functions 

for fixed m and known k. 
 
Step 4: Set m = m + 1. 
 
Step 5:If 𝐹1 𝑄∗, 𝐿∗; 𝑘,𝑚 + 1 ≥ 𝐹1 𝑄∗, 𝐿∗; 𝑘,𝑚  then go to Step-2, otherwise go to Step-6. 
 
Step 6: 𝑇𝐸𝑃𝑈(𝑄∗, 𝐿∗; 𝑘,𝑚∗)= 𝑇𝐸𝑃𝑈(𝑄∗ , 𝐿∗; 𝑘,𝑚), then  𝑄∗, 𝐿∗ ,𝑚∗  is pareto-optimal solution and 
𝑇𝐸𝑃𝑈𝑏 𝑄

∗, 𝐿∗; 𝑘 , 𝑇𝐸𝑃𝑈𝑣(𝑄∗;𝑚∗) are the compromise maximum values of objective functions for known k. 
 

Step 7: Find corresponding 𝐴𝑏 𝐿
∗ = 𝑢 + 𝑣𝐿∗ where 𝑢 =  1 −

1

𝜂
 𝐴𝑏0  𝑎𝑛𝑑 𝑣 =

𝐴𝑏0

𝜂𝐿0
,  

β L∗, k =
1

 1+τσ L∗ψ k  
𝑎𝑛𝑑 𝑅 𝐿∗, 𝑘 = 𝐷𝐿∗ + 𝑘𝜎 𝐿∗. 

 
Step 8:End. 
 
Algorithm 2. (For Model 4.1.2) 
Step 1: Set m = 1. 
 

Step 2:For a given 𝑞 let 𝑘0 = 0,𝑘𝑠 =   
1

𝑞
 − 1 𝑎𝑛𝑑 𝑘𝑗 = 𝑘𝑗−1 +

 𝑘𝑠−𝑘0 

𝑠
, 𝑗 = 1,2, … , 𝑠 − 1. 

 
Step 3: For each Lr perform (a) and (b), r=1, 2, ..., n. 

(a). Find the value of Qrj for each kj ∈  {k1, k2, ....., ks−1} using the formula 𝑄𝑟𝑗 =  
𝐾3(𝐿𝑟 ,𝑘𝑗 ,𝑚 )

𝐾2(𝑚)
 , where 

𝐾3(𝐿𝑟 , 𝑘𝑗 , 𝑚) and 𝐾2(𝑚) are given in (28) and (27) in Appendix-A respectively. 

 

(b). Find 𝐹2 𝑄𝑟 , 𝐿𝑟 ; 𝑘∗∗,𝑚 = maximize𝑗 =1,2,….,𝑠−1 𝐹
2 𝑄𝑟𝑗 , 𝐿𝑟 ; 𝑘𝑗 , 𝑚 ,where  

 

𝐹2 𝑄𝑟𝑗 , 𝐿𝑟 ; 𝑘𝑗 , 𝑚 = 𝑣1𝑇𝐸𝑃𝑈𝑏
          𝑄𝑟𝑗 , 𝐿𝑟 ; 𝑘𝑗 + 𝑣2𝑇𝐸𝑃𝑈𝑣

          𝑄𝑟𝑗 ; 𝑚 , 𝑣1 + 𝑣2 = 1. 

 
𝑎𝑛𝑑𝑣1, 𝑣2 ≥ 0. 
 
Step 4: Find 𝐹2 𝑄∗∗, 𝐿∗∗; 𝑘∗∗, 𝑚 = maximize𝑟=1,2,….,𝑛 𝐹

2 𝑄𝑟 , 𝐿𝑟 ; 𝑘∗∗,𝑚 , then  𝑄∗∗, 𝐿∗∗, 𝑘∗∗  is the pareto-

optimal solution and the values 𝑇𝐸𝑃𝑈𝑏
         (𝑄∗∗, 𝐿∗∗; 𝑘∗∗, 𝑚) and 𝑇𝐸𝑃𝑈𝑣

         (𝑄∗∗; 𝑚) are compromise maximum 
values of the objective functions for fixed m. 
 
Step 5: Set m = m + 1. 
 
Step 6:If 𝐹2 𝑄∗∗, 𝐿∗∗; 𝑘∗∗, 𝑚 + 1 ≥ 𝐹2 𝑄∗∗ , 𝐿∗∗; 𝑘∗∗, 𝑚 , then go to Step-2, otherwise go to Step-7. 
 
Step 7: 𝐹2 𝑄∗∗, 𝐿∗∗; 𝑘∗∗,𝑚∗∗ = 𝐹2 𝑄∗∗, 𝐿∗∗; 𝑘∗∗, 𝑚 , then  𝑄∗∗, 𝐿∗∗, 𝑘∗∗, 𝑚∗∗  is the pareto-optimal solution 
and the values 𝑇𝐸𝑃𝑈𝑏

         (𝑄∗∗, 𝐿∗∗, 𝑘∗∗),  𝑇𝐸𝑃𝑈𝑣
         (𝑄∗∗; 𝑚∗∗) are compromise maxi-mum values of the objective 

functions.  

Step 8: Find corresponding 𝐴𝑏 𝐿
∗∗ = 𝑢 + 𝑣𝐿∗∗ [where 𝑢 =  1 −

1

𝜂
 𝐴𝑏0 𝑎𝑛𝑑 𝑣 =

𝐴𝑏0

𝜂𝐿0
], β L∗∗, k∗∗ =

 1 + τσ L∗∗   1 +  k∗∗ 2 − k∗∗  
−1

𝑎𝑛𝑑 𝑅 𝐿∗∗, 𝑘∗∗ = 𝐷𝐿∗∗ + 𝑘∗∗𝜎 𝐿∗∗. 
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Step 9: End. 
 
5.NUMERICAL EXAMPLE 
Illustration 1: To illustrate the present model by an example, following data have been used. D = 600 
units/year, K = 1500 units/year, rs = 1000 units/year, Ab0 = $75 per order, Av0 = $250 per setup, hb = $2 per 
unit per year, hv = $1.4 per unit per year, cs = $50 per unit, cds = $15 per unit, csc = $1 per unit, σ = 4 
units/week, λ = 0.7, µ = 0.4, τ = 0.5, η = 45, Π0 = $8, Π = $2 and per unit. By our earlier assumption 

𝑃 ≤ 1 −
𝐷

𝑟𝑠
= 0.4, due to avoid shortages within the screening period, so we take [a, b] = [0.1, 0.25]. The lead 

time have three components (i.e, n = 3) with data shown in the Table-1. 
 

Table 1: Lead time data for first retailer. 

Lead time component (r) 1 2 3 

Normal duration br(days) 20 20 16 

Minimum duration ar(days) 6 6 9 

Unit crashing cost cr($/day) 0.4 1.2 6.0 

 
Using the data given in Table-1, we have L0 = 56 days (8 week), L1 = 56 − 14 = 42 days (6 weeks) L2 = 

42 – 14 = 28 days (4 weeks) L3 = 28 – 7 = 21 days (3 weeks). Hence 𝐿3 = min0≤𝑟≤𝑛 𝐿𝑟 = 3 𝑤𝑒𝑒𝑘𝑠, 𝐿0 =
max0≤𝑟≤𝑛 𝐿𝑟 = 8 𝑤𝑒𝑒𝑘𝑠. 

Assuming that the lead time demand follows a normal distribution with stock-out probability q = 0.1 
(the value of the safety factor k can be found directly from the standard normal table, which is 1.28) and 
value of ψ(1.28) is 0.0069567. Using Algorithm-I, for different values of the pair (w1, w2), the corresponding 
results of multi-objective model for normally distributed lead-time demand are shown in Table-2. 

 
Table-2 : Pareto optimal solutions of the Model-4.1.1 for different weights. 

(w1, w2) m F1 (TEPUb, TEPUv) 𝑄∗ 𝑅 𝐿∗ , 𝑘  𝐴𝑏 𝐿
∗  β L∗, k  

(0.3, 0.7) 1 8786.10 (5004.00, 10406.99) 506.62 56.39(4, 1.28) 74.17 0.9729 

2 8843.71 (5143.89, 10429.35) 314.79 56.39(4, 1.28) 74.17 0.9729 

3 8853.42 (5170.82, 10431.67) 235.30 81.77(6, 1.28) 74.58 0.9670 

4 8850.05 (5164.79, 10429.45) 191.65 81.77(6, 1.28) 74.58 0.9670 

5 8841.52 (5145.94, 10425.35) 163.64 81.77(6, 1.28) 74.58 0.9670 

(0.6, 0.4) 1 7194.76 (5111.78, 10319.23) 368.61 56.39(4, 1.28) 74.17 0.9729 

2 7263.09 (5162.16, 10414.47) 273.38 81.77(6, 1.28) 74.58 0.9670 

3 7275.24 (5171.11, 10431.43) 231.11 81.77(6, 1.28) 74.58 0.9670 

4 7271.82 (5169.09, 10425.92) 205.21 81.77(6, 1.28) 74.58 0.9670 

5 7262.26 (5162.70, 10411.60) 187.04 81.77(6, 1.28) 74.58 0.9670 

(0.9, 0.1) 1 5664.62 (5166.50, 10147.70) 259.21 81.77(6, 1.28) 74.58 0.9670 

2 5692.46 (5170.66, 10388.72) 236.97 81.77(6, 1.28) 74.58 0.9670 

3 5697.23 (5171.25, 10431.01) 226.89 81.77(6, 1.28) 74.58 0.9670 

4 5695.99 (5171.12, 10419.79) 220.14 81.77(6, 1.28) 74.58 0.9670 

5 5692.36 (5170.69, 10387.36) 214.84 81.77(6, 1.28) 74.58 0.9670 

Illustration 2: In this illustration, we use same data as in Illustration-1. Assuming here that the demand 
during lead time is distribution free and also considering q = 0.1 (stock-out probability), then from 
Proposition-4 it is clear that 0 ≤ k ≤ 3. Let kj = kj−1 + (ks − k0)/s, j=1, 2,..., s-1 where k0 = 0, ks = 3 and take s = 
300. Applying Algorithm-2 , the pareto optimal solutions of Model-4.1.2 for different v1 and v2 are obtained 
and presented in Table-3. 
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Table-3 : Pareto optimal solutions of the Model-4.1.2 for different weights. 

(v1, v2) m F2 (𝑇𝐸𝑃𝑈𝑏
         ,  𝑇𝐸𝑃𝑈𝑣

         ) 𝑄∗∗ 𝑅 𝐿∗∗, 𝑘∗∗  𝐴𝑏 𝐿
∗∗  β L∗∗, k∗∗  

 1 8777.70 (4971.44, 10408.95) 512.01 59.05(4, 1.6123) 74.17 0.4674 

2 8832.12 (5103.06, 10430.29) 319.36 62.38(4, 2.0286) 74.17 0.5175 

3 8839.14 (5123.05, 10431.75) 240.09 64.71(4, 2.3198) 74.17 0.5478 

4 8833.58 (5111.97, 10428.56) 195.96 66.53(4, 2.5475) 74.17 0.5692 

5 8823.20 (5088.10, 10423.58) 167.58 68.04(4, 2.7356) 74.17 0.5854 

 1 7173.92 (5071.30, 10327.83) 377.49 61.13(4, 1.872) 74.17 0.4997 

2 7237.63 (5116.50, 10419.31) 283.55 63.32(4, 2.1461) 74.17 0.5302 

3 7246.53 (5123.06, 10431.74) 240.70 64.69(4, 2.3170) 74.17 0.5475 

4 7240.64 (5119.41, 10422.47) 214.21 65.72(4, 2.4454) 74.17 0.5598 

5 7229.02 (5111.72, 10404.99) 195.49 66.56(4, 2.5503) 74.17 0.5694 

 1 5625.17 (5119.09, 10179.90) 273.65 63.61(4, 2.1823) 74.17 0.5340 

2 5650.46 (5122.64, 10400.83) 251.57 64.31(4, 2.2699) 74.17 0.5429 

3 5653.93 (5123.06, 10431.74) 241.32 64.67(6, 2.3143) 74.17 0.5473 

4 5651.76 (5122.83, 10412.19) 234.32 64.92(6, 2.3460) 74.17 0.5504 

5 5647.37 (5122.31, 10372.93) 228.76 65.13(6, 2.3723) 74.17 0.5529 

 
For each pair of values (w1, w2) [or (v1, v2)] the Model-4.1.1 [or Model-4.1.2] gives pareto optimal 

solutions, which are also shown in the Table-2 [or Table-3]. 
From the above results it is seen that the models for normally distributed lead time demand give the 

better results than the corresponding models for distribution free lead time demand. This excess quantity 
can be regarded as the expected value of penalty due to prefer the distribution free demand during lead-
time. 

 
6.CONCLUDING REMARKS 

In this study, we consider a single-vendor and single-buyer production inventory problem. Previous 
works on this problem mostly focused on stochastic demand, controllable lead-time and the effect of lead-
time on joint expected cost through ordering cost, lead-time crash cost and back order ratio [e.g., Ouyang et 
al. [20], Chang et.al. [17]]. Here we extend those models by considering imperfect production process in 
individual management system. We investigate to maximize the joint total expected cost and individual total 
expected cost by simultaneously optimizing order quantity, lead time, reorder point and the numbers of lots 
deliver from vendor to buyer for joint and individual management system respectively. 

In addition develop some algorithmic procedure to find optimal order quantity, optimal lead time, 
optimal reorder point and optimal numbers of lots deliver from vendor to buyer. Further we get the 
significant results in the total expected annual profit for different models. To do this firstly we assume that 
the lead-time demand follows a normal distribution and secondly we assume that only the first and second 
moments of the probability distribution of lead-time demand are known. 

In further research on this problem, it would be interesting to deal with the inventory model with a 
service level constrained in fuzzy stochastic environment. 

 
Appendix-A 
The values of E1(a, b), E2(a, b), E3(a, b) and E4(a, b) are from the following formulas:- 

𝐸1 𝑎, 𝑏 = 𝐸 𝑃 =  𝑝𝑔 𝑝 𝑑𝑝 =  
𝑝

𝑏−𝑎
𝑑𝑝 =

1

2
(𝑏 + 𝑎)

𝑏

𝑎

∞

−∞
, 

 

𝐸2 𝑎, 𝑏 = 𝐸 1 − 𝑃 =   1 − 𝑝 𝑔 𝑝 𝑑𝑝 = 1 −
1

2
(𝑏 + 𝑎)

∞

−∞
, 
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𝐸3 𝑎, 𝑏 = 𝐸  
1

1−𝑝
 =  

1

1−𝑝
𝑔 𝑝 𝑑𝑝 = −

1

𝑏−𝑎
 ln 1 − 𝑝  𝑎

𝑏 =
1

𝑏−𝑎
ln

 1−𝑎 

 1−𝑏 

∞

−∞
, 

 

𝐸4 𝑎, 𝑏 = 𝐸  
𝑃

1−𝑃
 =  

𝑝

1−𝑝
𝑔 𝑝 𝑑𝑝 =  

1

1−𝑝
𝑔 𝑝 𝑑𝑝 −  𝑔 𝑝 𝑑𝑝 =

1

𝑏−𝑎
ln  

1−𝑎

1−𝑏
 − 1

∞

−∞

∞

−∞

∞

−∞
. 

 
The expressions for K1(Lr, k, m), K2(m), K3(Lr, k, m), K4(Lr, k, m), K5(m) and K6(Lr, k, m) are respectively:- 
 

𝐾1 𝐿𝑟 , 𝑘,𝑚 = 𝑤1𝐷  𝐴𝑏 𝐿𝑟 +
Π𝐹 𝐿𝑟  

𝜏
+ 𝐶 𝐿𝑟 +

Π0𝐹 𝐿𝑟  
2

𝜏 1+𝐹 𝐿𝑟   
 𝐸3 𝑎, 𝑏 +

𝑤2𝐷𝐴𝑣0

𝑚
𝐸3 𝑎, 𝑏 ,   (26) 

 

𝐾2 𝑚 = 𝑤1𝑕𝑏  
1

2
𝐸2 𝑎, 𝑏 +

𝐷

𝑟𝑠
𝐸4(𝑎, 𝑏) + 𝑤2𝑕𝑣  

1

2
 𝑚 − 1 +

𝐷 2−𝑚 

2𝐾
𝐸3(𝑎, 𝑏) ,              (27) 

 

𝐾3 𝐿𝑟 , 𝑘,𝑚 = 𝑤1𝐷  𝐴𝑏 𝐿𝑟 +
Π𝐺 𝐿𝑟 

𝜏
+ 𝐶 𝐿𝑟 +

Π0𝐹 𝐺𝑟  
2

𝜏 1+𝐺 𝐿𝑟   
 𝐸3 𝑎, 𝑏 +

𝑤2𝐷𝐴𝑣0

𝑚
𝐸3 𝑎, 𝑏 ,   (28) 

 

𝐾4 𝐿𝑟 , 𝑘,𝑚 = 𝐷  𝐴𝑏 𝐿𝑟 +
Π𝐹 𝐿𝑟  

𝜏
+ 𝐶 𝐿𝑟 +

𝐴𝑣0

𝑚
+

Π0𝐹 𝐿𝑟  
2

𝜏 1+𝐹 𝐿𝑟  
 𝐸3 𝑎, 𝑏 ,                           (29) 

 

𝐾5 𝑚 = 𝑕𝑏  
1

2
𝐸2 𝑎, 𝑏 +

𝐷

𝑟𝑠
𝐸4(𝑎, 𝑏) + 𝑕𝑣  

1

2
 𝑚 − 1 +

𝐷 2−𝑚 

2𝐾
𝐸3(𝑎, 𝑏) ,                      (30) 

 

𝐾6 𝐿𝑟 , 𝑘,𝑚 = 𝐷  𝐴𝑏 𝐿𝑟 +
Π𝐺 𝐿𝑟  

𝜏
+ 𝐶 𝐿𝑟 +

𝐴𝑣0

𝑚
+

Π0𝐺 𝐿𝑟  
2

𝜏 1+𝐺 𝐿𝑟   
 𝐸3 𝑎, 𝑏 ,                          (31) 

Where 𝐹 𝐿 = 𝜏𝐸 𝑌 = 𝜏𝜎 𝐿𝑟𝜓 𝑘  𝑎𝑛𝑑 𝐺 𝐿𝑟 =
𝜏

2
𝜎 𝐿𝑟  1 + 𝑘2 − 𝑘 .  
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