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ABSTRACT 

The most important mathematicians associated with abstract algebra are Fermat, Leonhard Euler, 
and Carl Friedrich Gauss. Among them Gauss was establisher of many theorems associated with cyclic 
groups. Through this work we study about cyclic groups and various properties associated with them in a 
detailed manner. 
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1. INTRODUCTION 

In algebra, which is a broad division of Mathematics, abstract algebra is the study of algebraic 
structures such as groups, rings, field’s vector spaces.  The branch abstract algebra get evaluated and 
developed in the latter half of nineteenth century. The attempts to find the solution of general polynomial 
equations of higher degree that resulted in the discovery of groups were the initial breakthrough in abstract 
algebra.  

Groups and groups theory is considered as the foundation of abstract algebra. Simply a group is an 
algebraic structure consisting of a set of elements equipped with an operation that combines any two 
elements to form a third element. Other algebraic structures like rings are defined on the basics of groups. 
Cyclic group is an important derivative of groups which is defined as the groups which are generated by a 
single element. 

 
2. FUNDAMENTAL THEOREM OF CYCLIC GROUP 

Every subgroup of a cyclic group is cyclic. Moreover if |<a>|=n, then the order of every subgroup of 
<a> is a divisor of n, and for each positive divisor k of n, the group <a>has exactly one subgroup of order k 
namely <an/k>. 

 
Example: 

Suppose that G=<a> and |a|=|G|=30. The divisors of 30 are 1, 2, 3, 5, 6, 10, 15 and 30. G has one 
and only one subgroup of order each of these divisors. They are <a30/k> for each k=1, 2, 3, 5, 6, 10, 15 and 30. 
The table below gives as for each order what the subgroup is and what is its generator is 
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Order Generator Group 
1 <a30> {e} 
2 <a15> {e,a5} 
3 <a10> {e,a10,a20} 
5 <a6> {e,a6 ,…..,a24} 
6 <a5> {e,a5,a10 ,…..,a25} 

10 <a3> {e,a3,a6 ,…..,a27} 
15 <a2> {e,a2,a4 ,…..,a28} 
30 <a> {e,a,a2 ,…..,a29} 

 
Corollary (subgroups of Zn) 
        For each positive divisor k of n, the set <n/k>is the unique subgroup of Zn, of k; moreover these are 
the only subgroups of Zn.  
 
Example: 

Similarly to the above example, we let G =Z30. The table below gives the subgroup of Z30 and their 
generator. 

Order Generator Group 
1 <30> {0} 
2 <15> {0,15} 
3 <10> {0,10,20} 
5 <6> {0,6,12,18,24} 
6 <5> {0,5,10,15,20,25} 

10 <3> {0,3,6,9,12,18,21,24,27} 
15 <2> {0,2,4,6,8,………..,28} 
30 <1> {0,1,2,3,4,………..,29} 

 
3. Euler phi function 
               Let n∈ Z+. The Euler phi function of n, denoted ߮(n) is the number of positive integers less than n 
and relatively prime to n we set ߮(1)=1. 
Eg :߮(10)=4 
߮(1)=1 
߮(2)=2 
߮(3)=2 
߮(4)=2 
 
Theorem: 
          If d is a positive divisor of n, the number of elements of order d in a cyclic group of n is ߮(d). 
 
Proof: 
       There is exactly one group of such order (sag <a>). Every element of order d also generates <a> so 
counting the elements of order d is the same as counting the elements which can generate <a>. 
We know, 
An element a-k generates <a>iffgcd   (k,d)=1 
This number is precisely (d). 
 
Corollary 
        In a finite group, the number of elements of order d is divisible by ߮(d) 
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Theorem: 
        Every infinite cyclic group is isomorphic to Z under addition. 
 
Proof: 
Let G be an infinite cyclic group with a generator a. 
Let as define the mapping f: Z->G, f(n)=an. 
We have to prove that f is an isomorphism. 
Clearly f is onto since any element g∈ ∋ has the form an for some n ܩ ܼ. 
Let us prove that f is one to one. 
On contrary we assume that m, n∈ ܼ  n>m one has f(n)=f(m) 
Denote l=n-m, then 
 
             a1=am-n 
                     =an.(am)-1 
                       =f(n). (f(m))-1=e. Where e is an identity. 
 
We claim that G has atmost l elements namely 
 
                      G = {e,a,a2 ,………….al-1} 
 

Contrary to the assumption that G infinite. Any element in G has the form ak for some K∈ ܼ .Using 
the division algoritm. 

 
K=pl+r,    pߝZ,       0≤ > ݎ 1 
 
Thus ak=apl+r=apl .ar=(al)p .ar=ar∈ {e,a,a2 ,…….al-i) 
 
We have to prove that f preserves the structure. 
le, f(m+n)=f(m).f(n) 
But this is evident 
F(m,n)=am+n=am .an=f(m).f(n) 
 
Theorem: 
If G is a cyclic group of a finite order n, then G is isomorphic to Zn 

 
Proof: 
Let a be a generator of G consists of the following distinct elements S={e,a,a2 ,……an-1} 
Suppose that some of these elements coincide. 
Ak=al for k,l,∈ ܼ, ݇ > ݈. 
Then ak-l=e,  
we see that G consists of at most k-l distinct elements  
.e,a,a2 ,…………..ak-l-1 
∴K-l<n, this contradict to the assumption 
ܵ݅݊ܿ݁ S C G and S consists of n elements. 
We see that G=S 
Let us define the mapping f:Zn->G, f(k)=ak . 
f is bijective. 
It is remain to prove that f preserves the group structure ie, f(m+n)=f(m).f(n) 
F(m+n)=am+n=am .an =f(m).f(n) 
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Corollary 
i) A cyclic group generated by an element g is finite iffgn =e for some n≠0. 

II) The order of a finite cyclic group generated by an element g coincides with the minimal positive integer 
n such that gn =e 
 
Proof 
1) If the group <g>is finite; 
We know that gn=e. If on other hand <g> is infinite, then gn≠ ≠ ݊ ݕ݊ܽ ݎ݋݂ ݁ 0 
2) Fermats little theorem   
Let a be any integer. Then ap=a mod p. In particular ap-1 =1 mod p if a is coprime to p. 
 
Proof: 
       To prove the fermats theorem in generate. We prove congruent class version write the 
multiplication table of 2/PZ we vomit the bracket in the table. 

Xp 1 2 3…………………a………………………..p-1 

1 
2 
. 
. 
. 
a 
. 
. 
. 

p-1 

1.1 
2.1 

. 

. 

. 
a.1 

. 

. 

. 
(p-1)1 

1.2 
1.3 

. 

. 

. 
a.2 

. 

. 

. 
(p-1)2 

 
1.3……………….1.a…………………….1(p-1) 
2.3………………2.a…………………….2(p-1) 

. 

. 

. 
a.3………………….a.a…………………a(p-1) 

. 

. 

. 
……………………(p-1)a………………..(p-1)(p-1) 

 
 

 

Let u(a) denote the set of non zero element in the row corresponding to the multiplication a form which we 
get. 
U(a)=[a.1] [a.2]…………[a].[a]……[a][p-1]≡1(1.2.3……..p-1)modp 
While the product of Ui 

U(1)=[1][2]…….[p-1]≡1.2.3…….(p-1)(modp) 
But U(a)=U(1) 
Ap-1(1.2…….p-1)(mod p)≡ 1.2.3……….(݌ −  (݌ ݀݋݉)(1
Ap-1 ≡  ݌ ݀݋݉
Let p be a prime number, then 
 pk .pk-1(݇݌)߮
eg: 
              What is the order of u5000? 
  5000=5(1000)=5×103 =54 .23 

                     Now ߮(23)=23-22=4 
߮(54)=54 -53=53(5-1)=53×4 

                                 =125×4 
∵The Euiler phi function is multiplicative, we get 

߮(5000) = ߮(23).߮(54) 
                              =4×125×4 
                              =2000 
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 :ࢇ࢓࢓ࢋࡸ
            Let a be any integer, which is coprime to the positive integer n. 
            Then a �(n) =1 mod n 
 
Proof 
Let g=[a] ߝ Un. Also gφ(n)   =e But then 
[a �(n)]=[1] 
                        Thus 
a �(n) =1 mod n 
Given this it would be really nice to have a quick way to compute ߮(݊). 
 
4. Related classes of groups 

Several other classes of groups have been defined by their relation to the cyclic group. 
 
4.1  Virtually cyclic group. 
            A group is called virtually cyclic group if it contain a cyclic subgroup of finite index. 

<or> 
Any element in a virtually group can be arrived at by applying a member of a cyclic subgroup to a 

member in a certain finite set. 
Every cyclic group is virtually cyclic, a as it every finite group. An infinite group is virtually cyclic if it is 

finitely generated and has exactly two ends. 
 
eg: The product of z/n and z in which the 2 factor has finite index n. 
Every abelian sub group of a Gromov hyperbolic group is virtually cyclic. 
 
4.2 Locally cyclic group. 
It is a group in which each finitely generated subgroup is cyclic  
eg: Additive group of the rational  number. 
A group is locally cyclic if its lattice of subgroup is a distributive lattice. 
 
4.3  Cyclically ordered group 
                     A cyclically ordered group is a group together with a cyclic order preserved by the group is cyclic 
Every finite subgroup of a cyclically ordered group is cyclic. 
 
4.4  Metacyclic group and polycyclic group 

A metacyclic group is a group containing a cyclic normal subgroup whose quotient is also cyclic. These 
groups include the cyclic group the dicyclicgroup and the direct product of two cyclic group. 
                      A polycyclic group generalizes metacyclic groups by allowing more than one level of group 
extension. 
eg; Every finitely generated abelian group or nilpotent group is polycyclic. 
 
5. Associated Objects 
5.1. Representation 
                 The representation theory of the cyclic group is a critical base case for the representation theory of 
more general finite groups. In the complex case, a representation of a cyclic group decomposes into a direct 
sum of linear characters making the connection between character theory and representation theory 
transparent. In the positive characteristic case, the indecomposable representation of the cyclic group form 
a model and inductive basis for the representation theory of groups with cyclic sylow subgroups and more 
generally the representation theory of blocks of cyclic defect. 
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5.2. Cyclic graph 
              A cyclic graph illustrates the various cycles of a group and is particularly useful in visualizing the 
structure of small finite group. A cycle graph for a cyclic group is simply a circular graph, where the group 
order is equal to the number of nodes. A single generator defines the group as a directional path on the 
graph, and the inverse generator defines a backwards path. Trivial path can be drawn as a loop but are 
usually suppressed Z2 is sometimes drawn with two curved edges as a multi graph. 
                Cyclic groups Zn order n is a single cycle graph simply as an n-side polygon with the elements at the 
vertices. A cyclic group Zn can be decomposed into a direct product ZAXZB where n=ab where a and b are 
relatively prime (gcd ca1b)=1) 
 
5.3. Cayley graph 

A Cayley graph is a graph defined from a pair (G,s) where G is a group and S is a set of generators for 
the group. It has a vertex for each group element and an edge for each product of an element with a 
generator. In the case of a finite cyclic group with its single generator, the cayley graph is a cycle graph and 
for an infinite cyclic group with its generator the cayley graph is a doubly infinite path graph. 

However cayley graphs can be defined from other sets of generators as well. The cayley graph of 
cyclic groups with arbitrary generator sets is called circulent graphs. These graphs may be represented 
geometrically as a set of equally spaced points on a circle or on a line, with each point connected to 
neighbors with the same set of distance as each other point. They are exactly the vertex-transitive graphs 
whose symmetry group includes a transitive cyclic group. 

 
5.4. Endomorphism 
     The endomorphism ring of the abelian group z/nz is isomorphic to z/nz Itself as a ring under this 
isomorphism the number r corresponds to the endomorphism of z/nz that maps each element to the sum of 
r copies of it this is bijection iff r is co-prime with x so the automorphism group of z/nz is isomorphic to the 
unit group z/nz. 

Similarly the endomorphism ring of the additive group of Z is isomorphic to the ring Z. Its 
automorphism group is ismorphic to the group of units of the ring Z.ie, to ({-1,+1),X) 
 
6. Tensor product and hom of cyclic groups. 
The tensor product z/mz z/mz and the group of homomorphism  
Hom(z/mz,z/mz) can be shown to both be isomorphic to z/gcd(m,n)z 

For the tensor product, this is a consequence of the general fact R/lR (l+J). for the Hom group recall 
that it is isomorphic to the subgroup of z/nz consisting of the elements of order dividing m. That subgroup is 
cyclic of order gcd (m,n). 
 
CONCLUSIONS 
 Through this work we studied about cyclic groups and various properties associated with them in a 
detailed manner.  
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