

REVIEW OF RESEARCH

ISSN: 2249-894X IMPACT FACTOR: 5.2331(UIF) VOLUME - 7 | ISSUE - 6 | MARCH - 2018

TRAFFIC CONGESTION: A MAJOR ROAD NETWORK PROBLEM IN UDAIPUR CITY

Dr. Sabiha Khan Guest Faculty , Department of Geography, U.C.S.S.H., M.L.S.University, Udaipur.

ABSTRACT

In recent decades urban areas have expanded rapidly. As a result growth in number of vehicles and increase in traffic movements, the current level of congestion is growing day by day, and the future volume of traffic is expected to increase. Congestion can generally be defined as express demand for road travel. Supply of road travel infrastructure is not sufficient to meet demand levels during peak times to a given level of service.

Udaipur city is not only a major tourist spot but also rising as an industrial and educational centre in state of Rajasthan. Inadequate road

network, proliferation of traffic and lack of parking places are major factors for recurring congestion at particular points in the network. Inadequate public transport facilities and management etc. increase the problem of congestion.

It is therefore, crucial to investigate new technologies and alternative methods of traffic management to reduce congestion without increasing road space particularly in city core. In the proposed study, places and causes of congestion has been identified through network connectivity and nodal accessibility and existing road network. The study serves better solutions and possibilities to solve the existing problem of traffic congestion

KEY WORDS: Road Network, Traffic Congestion, Traffic Management.

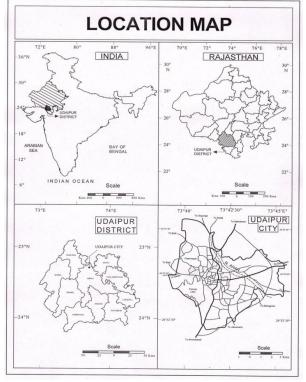
INTRODUCTION

Traffic congestion means there are more people trying to use a given transportation facility during a specific period of time than the facility can handle with what are considered to be acceptable levels of delay or inconvenience.

Recurrent Congestion- Traffic congestion can seen regularly during peak traffic periods, when travel demand is high (e.g. morning and afternoon commute). Non Recurrent Congestion- It occurs when something unusual and unexpected happens to reduce available road capacity(e.g. weather, construction, road accidents, etc.).

Transportation is an important aspect of human civilization as it reflects the economic level and technological advancement of a given society. Traffic congestion in urban areas is often the outcome of successful urban economic development, employment, housing and cultural, policies that make people want to live and work relatively close to each other and attract firms to benefit from the gains in productivity thus derived. Road transport enables access to social activities, employment, health care, education, etc. The level of access is determined by various factors including travel time and reliability. As congestion impacts on

travel time and reliability it reduces accessibility. In recent decades urban areas have expanded rapidly. The current level of congestion is growing day by day, and the future volume of traffic is expected to increase. However, the fact that cars has brought freedom, flexibility and mobility to many people cannot be overlooked, but there is increasing concern about the health and environmental effects of pollution from congested traffic. The same forces that draw inhabitants to congregate in large urban areas lead sometimes to intolerable levels of traffic congestion on urban streets and thoroughfare. Also, rising incomes combined with an increasing propensity from personal mobility and inadequate mass transportation on facilities has resulted in a pronounced increase in automobile ownership and its utilization in major cities. The emergence of traffic and subsequently traffic congestion has opened up the need for improved traffic flow to ensure reduced travel time, safety, average fuel consumption and healthy environments. Traffic congestion occurs when there is excess demand on a highway or road, or when the actual number of vehicles on the road is greater than the capacity of that road to maintain effective traffic flow. Slow speeds, longer trip times, and increased queuing of vehicles characterize traffic congestion (Altshore, 1977). According to Cervero (1991) and Downs (1992) road traffic congestion is a major urban transport problem. Increasing demand for travel will compound the problem if appropriate solutions are not actively sought. Efficient public transport (PT) can be one of the potential solutions to the problem of urban road traffic congestion (Vuchic 1999, Hyman and Mayhew 2002,;Pucher et al. 2007;).Congestion can generally be defined as excess demand for road travel Supply of road travel infrastructure is not sufficient to meet demand levels to a given level of service. As a consequence, travel speeds fall and delays are explained. This general definition of congestion implies that it can be measured in various ways. Average speed, flow/density, delay and travel time variability can all be used to assess the level of congestion. Congestion prevents traffic from moving freely, quickly and/or predictably (Organisation of Economic Co-operation and Development (OECD), 2006). Ian W.H. Parry (2008) -presented the optimal design of pricing policies to reduce urban automobile congestion. Urbanization, according to Armah, Yawson and Papson (2009) noted a myriad challenges to transportation system in relation to negative extremity such as traffic congestion and environmental risk. Azeem Uddin(2009) discussed on the problem of road congestion and presented technical solutions i.e. use of traffic engineering, transportation management, and traveller information tools. Awosusi, AjokeOlukemi(2010) worked on Urban Traffic Congestion and Its Attendant Health Effects on Road Users in Ado-Ekiti, Nigeria. It looked critically at the problems, causes and possible remedial measures to urban traffic congestion within the study area.MdAftabuzzaman, Graham Currie, Majid Sarvi(2010) presented a comparative assessment of international research valuing the congestion relief impacts of Public Transport.


It is therefore, crucial to investigate new technologies and alternative methods of traffic management to reduce congestion without increasing road space particularly in city core. In the proposed study, places and causes of congestion has been identified in the existing road network of the city. The study serves better solutions and possibilities to solve the existing problem of traffic congestion.

STUDY AREA

Udaipur city is located at 24° 35' N latitude and 73° 42' E longitude at a distance of nearly 122 kms north of tropic of cancer and 577 meters above M.S.L. surrounded by hills and drained by river Ahar. Udaipur city is major tourist, industrial and educational centre in state of Rajasthan. The road system of the city is linked with the external system. The National Highway No.8 serving Delhi, Haryana, Rajasthan and Gujarat passes right through the city in the north-south direction. Three State Highways connect the city with four nearest district headquarters namely Jodhpur, Sirohi, Chittorgarh and Banswara in the west, south-west, and north-east and south direction respectively. The city is not well settled city because of its unsettled formation of roads and inadequate road network. Problem of congestion is increasing day by day as a result of increase in traffic. In the city 1105 acre land is under transportation, which is 11.18% of the developed area and 4.89% of total urban area. The municipal area of the city is 61.10 sq. Kms.

OBJECTIVES

- To analyse the problem of congestion in the existing road network of the city.
- To identify the factors associated with congestion on major routes and junctions of the city.
- To serves better solutions and possibilities to solve the existing problem of traffic congestion.

METHODOLOGY AND SOURCE OF DATA

Arterial, sub arterial roads and bottlenecks of existing road network obtained from Traffic and Transportation Master Plan, Udaipur City. Road network characteristics responsible for traffic congestion on major routes and nodes of the city have been collected through field survey. Data of traffic volume at different junctions and noise pollution have been obtained during peak hours of weak days and signal timing at major junctions of the city have been obtained through primary survey.

RESULT AND DISCUSSION

The endemic and unpredictable traffic congestion degrades the quality of daily life in the city. Rapid growth in number of vehicles and a mixed incompatible mode of slow and fast traffic is causing congestion.People not using public transport - either because it is less convenient, too expensive or not available. Public transport buses and ride sharing auto-rickshaws are available on selected routes. The vehicular population is growing almost in geometric progression and the share of two- wheelers in the total vehicular population is increasing by leaps and bounds, which is % of total vehicles registered in the city (Table 1).

	Table 1. Registered Wotor Vehicles III Odalpul								
Year	Two-	Passenger	Light Motor	Heavy Motor	Others	Total			
	Wheeler	Vehicle	Vehicle	Vehicle					
2003-04	15610	446	2684	1669	45	20454			

Table 1: Registered Motor Vehicles in Udaipur

2004-051621935128551274-206992005-06193995313553147720249802006-072428857934262986104313832007-082457677553663300129341462008-092612364354062246132345502009-10266786265406250192353032010-11344638156964319497455332011-123887396073523505150508402012-134159011617304329417253521							
2006-072428857934262986104313832007-082457677553663300129341462008-092612364354062246132345502009-10266786265406250192353032010-11344638156964319497455332011-12388739607352350515050840	2004-05	16219	351	2855	1274	-	20699
2007-082457677553663300129341462008-092612364354062246132345502009-10266786265406250192353032010-11344638156964319497455332011-12388739607352350515050840	2005-06	19399	531	3553	1477	20	24980
2008-092612364354062246132345502009-10266786265406250192353032010-11344638156964319497455332011-12388739607352350515050840	2006-07	24288	579	3426	2986	104	31383
2009-10266786265406250192353032010-11344638156964319497455332011-12388739607352350515050840	2007-08	24576	775	5366	3300	129	34146
2010-11 34463 815 6964 3194 97 45533 2011-12 38873 960 7352 3505 150 50840	2008-09	26123	643	5406	2246	132	34550
2011-12 38873 960 7352 3505 150 50840	2009-10	26678	626	5406	2501	92	35303
	2010-11	34463	815	6964	3194	97	45533
2012-13 41590 1161 7304 3294 172 53521	2011-12	38873	960	7352	3505	150	50840
	2012-13	41590	1161	7304	3294	172	53521

CITY HAS BEEN DIVIDED INTO TWO MAJOR PARTS-

Walled City- The road system of walled city is, in many ways different from the one existing outside the walls. The region having inadequate road network with narrow width of roads and so many bottlenecks. The width of roads in walled city is not more than 5-20 feet and it is only a meter or so at many places. Roads are narrow, crooked, undulating and having eccentric pattern. The region is most densely populated under residential, commercial, touristic land use. Two or three storey buildings on these roads have no proper space for parking in their residents. Most of them have been converted in other categories such as shops, guest houses, hotels and touristic market. Road side parking is better options for consumers, where parking places are not providing by owners of these categories. Road side encroachments by hawkers, vegetable sellers, cattle's and parked vehicles are other major factors of congestion in walled city. In this part of the city, the problem of congestion exaggerates at school time, construction or repairing work and loading and unloading of goods. The problem reaches to its peak during marriage and tourist season.

Hathi Pol, Delhi Gate, Suraj Pol, Udai Pol are major junctions located on the periphery (Kot) of walled city. These junctions are most accessible nodes of the city road network through which traffic from outer part enters in the walled city. Excess load of vehicular traffic, road side encroachments, mismanagement of traffic and unawareness of traffic rules are major problems on these junctions. Inadequate road network such as lack of parking places, pedestrian tracts and subways and mismanagement of traffic like lack of segregation of traffic and one ways, poor signal timings and breaking of traffic rules are responsible factors of congestion at major junctions. Improper functioning of traffic signals is a cause of great worries. There is however, a bigger issue that needs to be handled, road traffic management affected by poor functioning of signals. Until this issue is addressed, road users will continue to experience severe delays during their travels and pedestrians will remain at risk when crossing busy roads. Air and noise pollution are another major problem of walled city occurred due to congestion.

S.N.	Junction	From		Time	Awaited	Two	Three	Four
				for	Time	Wheeler	Wheeler	Wheeler
				cross	(In sec.)			
				(In sec.)				
1	Suraj Pol	Udai Pol		35	69	60-65	35-40	35-40
	(per turn)	Rang Niwas		17	87	45-50	15-20	10-15
		Delhi Gate		35	69	40-45	55-60	40-45
		Thokar Chouraha		17	87	45-50	25-30	15-20
		TOTAL		104	-	190-210	130-150	100-120
2.	Delhi	Suraj Pol		35	80	65-70	35-40	35-40
	Gate	Вари	Bazaar,	20	95	45-50	20-25	15-20
	(per turn)	Dhanmandi						
		Hathi Pol		15	100	40-45	55-60	20-25
		Shastri C.&Co	ourt C.	20	85	70-75	25-30	20-25

Table No. 2: Volume of Traffic at major junctions of the city (With signal timing)

TRAFFIC CONGESTION: A MAJOR ROAD NETWORK PROBLEM IN UDAIPUR CITY

VOLUME - 7 | ISSUE - 6 | MARCH - 2018

		TOTAL	90	_	220-240	135-155	90-110
3.	Chetak	Hathi Pol	20	50	25-30	15-20	15-20
	Circle	Court Circle	20	50	30-35	10-12	10-12
	(per turn)	Fateh Sagar	15	55	20-25	5-10	5-10
		Sukhadia Circle	15	55	20-25	15-20	10-12
		TOTAL	70	-	95-115	45-62	40-54
4.	Court	Shastri Circle	19	57	35-40	5-10	15-20
	Circle	Chetak Circle	19	57	30-40	5-10	10-12
	(per turn)	Delhi Gate	19	57	35-40	15-20	10-12
		M.G. College	19	57	20-25	5-10	5-10
		TOTAL	76	-	120-145	30-50	40-54

Source: Field Survey -2016

Above table no.1 presents load of traffic and signal timing at major junctions of the walled city. At Surajpol and Delhi Gate junctions signal timing is not adequate according to flow of traffic (volume). It creates recurrent congestion for whole day. Volume of traffic at other junctions of the city has shown in table no. 2. Traffic signal is not available on these junctions, which creates mismanagement and congestion.

	Table No. 3: Volume of Traffic at other major junctions of the city								
S.No.	Junction	From 2-Wheeler 3-Whee		3-Wheeler	4-Wheeler				
1.	Shastri Circle	Delhi Gate	40-45	20-25	15-20				
	(Per min.)	Ashok Nagar Road	60-70	20-25	20-25				
		Court Circle	30-35	25-30	20-25				
		M.G. College	25-30	10-15	15-20				
		TOTAL	155-180	75-95	70-90				
2.	Udai Pol	Suraj Pol	40-50	20-25	15-20				
	(Per Min.) Saveena		25-30	10-15	10-15				
		G. Villas	30-40	15-20	10-15				
		Gulab Bagh	25-30	10-15	10-15				
		TOTAL	120-150	55-75	45-65				
3.	Hathi Pol	Ashwini Market	45-50	20-25	10-15				
	(per minute)	Chetak Circle	40-45	15-20	5-10				
		Ghantaghar	30-40	5-10	5-10				
		Jharia Marg	10-15	5-10	0-5				
		TOTAL	125-150	45-65	20-40				

Source: Field Survey-2016

Table No. 4: Level of Noise Pollution during Peak Hour in Udaipur City

S.No.	Location	Minimum Value	Maximum Value
1.	Chetak Circle	60 db	75 db
2.	Court Circle	70 db	78 db
3.	Delhi Gate	75 db	90 db
4.	Hathipol	60 db	75 db
5.	Shastri Circle	70 db	80 db
6.	Surajpol	77 db	90 db
7.	Udaipol	80 db	90 db

Source: Field Survey-2016

Outside Walled City- Outer part of the walled city has adequate road network with rectilinear pattern of roads. New developed residential, commercial and educational sectors having proper parking places. End nodes located on the periphery of the city boundary, through which vehicular traffic of other rural and urban areas enter and merge with the city traffic. Maximum number of road accidents and fatalities recorded on these nodes because of lack of over bridges, road lights and traffic signals. In last decade approximate 80% of fatalities recorded at Goverdhan Villas bye pass, Pratap Nagar bye pass and Ambamata. Bottlenecks and road side encroachments on arterial roads are responsible factors for occurrence of congestion and road accidents.

There are so many factors associated with congestion on arterial and sub arterial roads are given in below tables.

S. No.	Route	Bottleneck Point		
1	Udaipur-Ahmedabad	Goverdhan Villas		
2 Udaipur-Banswara		Saveena		
3	Udaipur-Chittorgarh	Debari, Pratap Nagar and Sunderwas		
4	Udaipur-Jaipur	Pulan and Bhuwana		
5	Udaipur-Jhadol	Sisarma		
6	Udaipur-Ranakpur	Badgaon		

Table No. 5: Arterial Roads of the City

Source: Traffic and Transportation Master Plan, Rajasthan Govt.

				citat Road.		
S.N	Route	Distance	Width	Divider/	Junctions/	Features of
		(In KMs)	(Feet)	Cuts	Signal P/A	Congestion
1	Fatehpura-	1.0	80	Present	_	Bus stoppage at
	Sukhadia Circle		Feet	3		Fatehpura. Merge of
						traffic at junction.
2	Sukhadia Circle	1.2	80	Absent	_	Ayad bridge(
	Chetak Circle		Feet			bottleneck)
3	Chetak Circle -	0.7	80	Absent	_	Road side
	Hathipol		Feet			encroachments.
4	Chetak Circle	1.2	100	Present	Court Circle	Road side
	Shastri Circle		Feet	3	(Present)	encroachments on
						hospital road. absence
						of divider
5	Hathi Pol-	1.5	80-100	Absent	Delhi Gate	Absence of divider and
	Shastri Circle		Feet		(Present)	road side
					Court Cir.	encroachment at
					(Present)	Ashwini Market.
						Encroachment and
						Heavy rush at Delhi
						Gate junction.
						Mismanagement of
						traffic at junctions.
6	Hathi Pol-	1.2	20-40	Absent	Ghantaghar	Narrow width of
	Jagdish Mandir		Feet		(absent)	roads. Whole route

Table No. 6:Sub Arterial Roads of the City

						congested by road
-	Dalla Cata	0.0	00	Deserved		side encroachments.
7	Delhi Gate-	0.8	80 Feet	Present 01	-	Heavy rush on Town Hall road. Road side
	Suraj Pol		reet	01		
						,
						auto-rickshaw at Suraj
0	Curra Dal	0.55	00.100	Duccout		Pol.
8	Suraj Pol –	0.55	80-100	Present	-	Road side
	Udai Pol		Feet	1		encroachments by
						vehicles, specially by
						private buses.
						Mismanagement of
						traffic.
9	Udai Pol-	6.0	80-100	Present	Patel Circle	Bottleneck at
	G.V.Bye Pass		Feet	28	(Absent)	G.V.residential area.
					Paras	Non working Light
					Tiraha	system and
					(Present)	encroachment by
						vegetable and fruit
						sellers at Paras Tiraha.
10	Sevashram-	6.2	80-100	Present	Reti Stand	Road encroachment
	Paras		Feet	27	(Absent)	by trucks at Reti stand
						and Krishi Upaj Mandi.
11	M.L.S.U. Shastri	3.7	80	Present	Sukhadia	Bekni Pulia, Ayad
	Circle		Feet	20	Memorial	bridge (bottleneck).
					(Present)	Merge of traffic at
						ayad bridge and Shakti
						Nagar Chouraha.
						Mismanagement of
						traffic at Sukhadia
						Memorial.
12	Pratap Nagar	5.3	100	Present	M.B.Colleg	Heavy traffic rush.
	Bye Pass-Suraj		Feet	40	е	Merge of traffic and
	Pol				(present)	road side
					Sevashram	encroachment by
					(present)	vegetable sellers near
					Thokar	railway station.
					(Absent)	Mismanagement of
						traffic at junctions.
13	Shastri Circle-	2.1	60-80	Uncont.	M.G.Colleg	Ayad bridge,
	Sukhadia Circle		Feet		е	Bhupalpura turn
						(bottleneck).
					1	Mismanagement of
						traffic.

Source: Field Survey-2016

CONCLUSION AND SUGGESTIONS-

This research concludes that inadequate road network, proliferation of traffic and lack of parking places are major factors for recurring congestion at particular points in the network. While, inadequate

public transport facilities and management etc. exaggerate the problem of congestion. Due to vehicular congestion level of air and noise pollution increased in the walled city, while road accidents occurred at major junctions and peripheral nodes of the city.

Walled city and major junctions of the city at peripheral location having recurrent congestion, while arterial roads, sub arterial roads and end nodes of the city having a problem of non- recurrent congestion.

SOLUTION AND SUGGESTIONS:

The improving-infrastructure approach seeks to accommodate the future. What is also needed is a preventive approach to actually reduce the traffic on the roads. This can be achieved by following steps:

Improve road network:

- Proper maintenance and widening of roads.
- Provision of service roads and proper alignment of roads.
- Construction of new roads, fly-over and over bridges.
- Built adequate foot paths and sub ways for pedestrians.
- Bottlenecks must be removed on the roads.
- Busy intersections must be remodelled.
- There should be proper road dividers on arterial roads with significant cuts.

Proper land use:

- There should be proper land under transportation and reserve adequate land for future transportation planning.
- Owners of residential houses should not be permitted to convert their land into any other category.
- Schools, hotels and shopping complexes at congested areas and road side vegetable markets Should be transferred at proper place.
- There should be planned parking places and bus stoppages in the city.

Reduce traffic on roads:

- Introduce car free zones in C.B.D.
- On street parking of vehicles, encroachments should be banned strictly.
- Road pricing on arterial roads by applying ANPR system and OCR techniques.
- Build better public transport facilities in the city.
- Encourage sharing vehicles for the common trip. Ridesharing ca involve carpooling, vanpooling and bus pooling.

Traffic control system:

- Intersection traffic control devices should se improved. These devices include stop signs, traffic signs and turning lanes.
- Conflicting traffic at intersections, this helps in increase the capacity of road network.
- The measures like designating one way streets and banning the conflicting turns.
- Installation of traffic signs and signals and road marking is also important.
- One way traffic regulations should be adopted in heavy traffic areas of C.B.D.

Awareness Programmes:

- These programmes should be introduced by NGOs, media, government and private sectors.
- Campaign programmes especially for school students should organised.
- Road safety week and licence camps should conducted timely by government.

REFERENCES:

- Aftabuzzaman ,M.. Currie, G. And Sarvi, M. (2010). Evaluating the Congestion Relief Impacts of Public Transport in Monetary Terms. *Journal of Public Transportation*, Vol. 13, No. 1
- Arnott, R. and Small, K. (1994) The economies of traffic congestion American scientistVol.82, pp.446 455.
- Awosusi, A.O. (2010). Urban Traffic Congestion and Its Attendant Health Effects on Road Users in Ado-Ekiti, Nigeria. *An International Multi-Disciplinary Journal, Ethiopia* Vol. 4 (4), 434-446.ISSN 1994-9057 (Print) ISSN 2070-0083 (Online).
- Azeem Uddin.(2009).Traffic congestion in Indian cities: Challenges of a rising power. Kyoto of the Cities, Naples.
- Byrne, G.E. and Mulhall, S.M. (1995). Congestion Management data requirement and comparisons. Transportation Research Record, *Journal of Transportation Research Board*, 1499, pp. 28-36.
- Central Business District in Lagos, Nigeria. *Journal of Sustainable Development*, Vol. 5, No. 8, ISSN 1913-9063 E-ISSN 1913-9071
- Dewan, K.K. nd Ahmad, J. (2007). Carpooling: A Step to Reduce Congestion (A Case Study of Delhi), *Engineering Leers*, 14(1), pp.61-66.
- Lindley, J.A. (1987). Urban Freeway Congestion: Quantification of the problem and effectiveness of potential solutions, Institute of Transportation Engineers Journal, 57(1), pp.27-32.
- Litman, T.(2012).Smart Congestion Relief -Comprehensive Analysis of Traffic Congestion Costs and Congestion Reduction Benefits. *Transportation Research Board, Annual Meeting,* Paper P12-5310.
- Mallett, W.J.(2008). Surface Transportation Congestion: Policy and Issues, CRS Report for Congress.
- Olayiwola, K.O., Olaseni, A.M. and Fashina, O. (2014). Traffic Congestion Problems in Central Business District (CBD) Ikeja, Lagos Metropolis, Nigeria. *Research on Humanities and Social Sciences*, Vol. 4, NO. 1, ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online).
- Osoba, S.B. (2012). Appraisal of Parking Problems and Traffic Management Measures in Central Business District in Lagos, Nigeria. *Journal of Sustainable Development*, Vol. 5(8).
- Rao,A.M. and Rao,K.R. (2012). Measuring Urban Traffic Congestion- A Review. International Journal for Traffic and Transport Engineering, Vol.2 (4), pp. 286 305
- Turner, S.M.(1992). Examination of indicators of congestion level, Transportation Research Record, Journal of the Transportation Research Board, 1360, pp.150-157.
- Venables, A.J.(1999). Road Transport Improvements and Network Congestion. *Journal of Transport Economics and Policy*, Vol. 33, Part 3, pp. 319-328.

Dr. Sabiha Khan

Guest Faculty , Department of Geography, U.C.S.S.H., M.L.S.University, Udaipur.