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ABSTRACT:  

The applicability of the dynamic programming method to two-dimensional slope stability 

analyses is studied. The critical slip surface is defined as the slip surface that yields the minimum 

value of an optimal function. The only assumption regarding the shape of the critical slip surface is 

that the surface is an assemblage of linear segments. Stresses acting along the critical slip surface 

are computed using a finite element stress analysis. Assumptions associated with limit equilibrium 

methods of slices related to the shape of the critical slip surface and the relationship between 

interslice forces are no longer required.  
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1. INTRODUCTION 

A conventional slope stability analysis involving limit equilibrium methods of slices consists 

of the calculation of the factor of safety for a specified slip surface of predetermined shape and the 

determination of the location of the critical slip surface with the lowest factor of safety. To render the 

inherently indeterminate analysis determinate, conventional limit equilibrium methods generally 

make use of assumptions regarding the relationship between the interslice forces. These assumptions 

become disadvantages to limit equilibrium methods, since the actual stresses acting along the slip 

surface are quite approximate and the location of the critical slip surface depends on the shape 

assumed by the analyst. 

The assumptions related to the interslice force function in limit equilibrium methods are 

unnecessary when a finite element stress analysis is used to obtain the normal and shear stresses 

acting at the base of slices (Fredlund and Scoular 1999). A stress analysis provides normal and shear 
stresses through the use of the finite element numerical method with a switch on of the gravity 

forces. Subsequently, the equation for the factor of safety becomes linear. Assumptions regarding the 

uncertainty of the shape of the critical slip surface can be omitted when an appropriate optimization 

technique is introduced into the analysis. 
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Optimization techniques have been developed by several researchers for over two decades 

and have provided a variety of approaches to determine the shape and location of the critical slip 

surface (Celestino and Duncan 1981; Nguyen 1985; Chen and Shao 1988; Greco 1996). Each 

approach has its own advantages and shortcomings. The main shortcoming associated with these 

approaches, however, is that the actual stresses within a slope are quite approximate. This disregard 

for a more accurate assessment of the stresses can lead to inaccuracies in the computation of the 

factor of safety and an inability to analyze more complex problems. 

The dynamic programming method can be combined with a finite element stress analysis to 

provide a more complete solution for the analysis of slope stability because the technique overcomes 

the primarily difficulties associated with limit equilibrium methods. The disadvantage of the 

dynamic programming approach is that there are more variables to specify for the analysis, such as 

Poisson’s ratio and the elastic moduli of the soils involved. 

The dynamic programming method for a slope stability analysis has not been widely used in 

engineering practice primarily because of the complexity of the formulation and the lack of 

verification of the computed results. Baker (1980) introduced an optimization procedure that utilized 

the algorithm of the dynamic programming method to determine the critical slip surface. In this 

approach, the associated factors of safety were calculated using the Spencer (1967) method of slices. 

Yamagami and Ueta (1988) enhanced Baker’s approach by combining the dynamic programming 

method with a finite element stress analysis to more accurately calculate the factor of safety (Fig. 1). 
The critical slip surface was assumed to be a chain of linear segments connecting two state points 

located in two successive stages. The resisting and the actuating forces used to calculate an auxiliary 

function were determined from stresses interpolated from Gaussian points within the domain of the 

problem. Yamagami and Ueta analyzed two example problems to illustrate the proposed procedure. 

Zou et al. (1995) proposed an improved dynamic programming technique that used 

essentially the same method as that introduced by Yamagami and Ueta (1988). The modification 
made by Zou et al. was that the critical slip surface might contain a segment connecting two state 

points located in the same stage. The stability of a trial dam in Nong Ngu Hao, Bangkok, Thailand, 

was analyzed as part of the study of the proposed procedure. 

The objective of this research program is to study the use of the dynamic programming 

method in solving practical slope stability problems. The analytical procedure behind the dynamic 

programming method is mainly based on the research of Yamagami and Ueta (1988). A computer 

program named DYNPROG was developed to interface with a general partial differential equation 

solver known as FlexPDE (PDE Solutions Inc. 2001) to determine the stress states in the soil mass 

and then determine the shape and location of the critical slip surface and the corresponding factor of 

safety. Numerous example problems have been solved using DYNPROG. Examples studied include 

homogeneous slopes, layered slopes, and a case history. The results obtained from the analyses were 

compared with results from several wellknown limit equilibrium methods of slices (Fredlund and 

Krahn 1977). 

 
2. BACKGROUND 

Bellman (1957) introduced a mathematical method called the dynamic programming method. 

One of the objectives of the dynamic programming method was to maximize or minimize a function. 

The dynamic programming method has been widely used in various fields other than geotechnical 

engineering. Baker (1980) appears to be the first to apply the optimization technique in the analysis 

of the stability of slopes. 
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2.1 Definition of the factor of safety 

For an arbitrary slip surface AB, as shown in Fig. 2, the equation for the factor of safety can 

be defined as  
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where τis the mobilized shear stress along the slip surface, τf is the shear strength of the soil, 

and dL is an increment of length along the slip surface. It is assumed that the critical slip surface can 

be approximated by an assemblage of linear segments. Each linear segment connects two state points 

located in two successive stages. The stage–state system forms a grid consisting of rectangular 

elements called the search grid. The rectangular elements formed by the search grid are called grid 

elements. In this discretized from, the overall factor of safety for the slip surface AB is defined as 

follows: 
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where n is the number of discrete segments, τi is the shear stress actuated, τfi is the shear 

strength, and ∆Li is the length of the segment. 

 

2.2 Theory of the dynamic programming method 

A minimization is necessary for the value of the factor of safety, Fs, in eq. [2]. It was shown 

by Baker (1980) that the minimum of Fs in eq. [2] can be found by using an auxiliary function G. 

The auxiliary function is also known as the return function, and it can be defined as follows (Fig. 3): 
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Fig. 1. Search for the critical slip surface based on the dynamic programming method (after 

Yamagami and Ueta 1988). 
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Fig. 2. An arbitrary surface AB in a discretized form. 

 

where Si are actuating forces acting on the ith segment of the slip surface, Ri are resisting 

forces acting on the ith segment of the slip surface, and n is the total number of discrete segments 

making up the slip surface. 
The minimum value of the auxiliary function is Gm and is defined as 
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Along the ith segment, the shear strength for a saturated– unsaturated soil can be calculated 

using the following equation (Fredlund and Rahardjo 1993): 
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where c', ' and 
b
 are the shear strength parameters of a saturated–unsaturated soil; (σn – ua) 

is the net normal stress acting on the ith segment; and (ua – uw) is the matric suction.  

The normal and shear stresses acting on the ith segment can be computed from a stress 

analysis as follows: 
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where σn and τn are the normal and shear stresses acting on the ith segment, respectively; is 

the inclined angle of the ith segment with the horizontal direction; and σx, σy, and τxy are the normal 

and shear stresses acting in the x- and y-coordinate directions. These stresses can be determined 
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using a finite element stress analysis that uses any particular soil behaviour model. If the density of 

the search grid is sufficiently fine, it can be assumed that stresses are constant within a small grid 

element. These constant stresses are signified by stresses at the centre points of the grid element. 
Consequently, the resisting and actuating forces acting on the ith segment of a slip surface can be 

calculated as follows (Fig. 3): 
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Fig. 3. Actuating and resisting forces acting on the ith segment. 

 

where (ij) is a grid element travelled by the ith segment; τfij and τij and τij are the shear 

strength and shear stress actuated at the centre point of (ij), respectively; c'ij, 'ij, and 
b

ij are the 

strength parameters of the saturated–unsaturated soil within (ij); ne is the number of (ij); and lij is the 

length of the ith segment limited by the boundary of (ij). 

An optimal function, Hi(j), obtained at state point {j} located in stage [i] is introduced. The 

optimal function, Hi(j), is defined as the minimum of the return function, G, calculated from a state 

point for the initial stage to state point {j} located in stage [i]. According to the principle of 

optimality (Bellman 1957), the optimal function, Hi+1(k), obtained at state point {k} located in stage 

[i + 1] is defined as  

 

   Hi1(k) Hi(j) Gi( kj, )             [10] 

 

where Gi( kj, ) is the return function calculated from state point {j} of stage [i] to state point 

{k} of stage [i + 1].  

The optimal point in the final stage is defined as the state point at which the calculated 

optimal function is a minimum. From the optimal state point {k} found in the final stage, the optimal 
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state point {j} located in the previous stage is also determined. The optimal path defined by 

connecting optimal state points located in every stage is eventually found by tracing back from the 

final stage to the initial stage. This optimal path defines the critical slip surface.  

The value of the overall factor of safety, Fs, in eq. [3] has not been defined in advance and 

therefore an initial value must be assumed. The trial value of Fs is updated using the value of Fs 

evaluated after each trial of the search. The optimization process will stop when a predefined 

convergence is reached. 

 

2.3 Finite element stress analysis using FlexPDE 

The general partial differential equation solver known as FlexPDE is a flexible computer 

program that can be used to solve single or coupled sets of partial differential equations. FlexPDE 

allows the user to pose a problem in a compact problem-oriented form and proceed directly to a 

graphical presentation of the solution, without digressing to program the finite element method. 

For the plane strain condition (i.e., strain in the z-coordinate direction z = 0), a soil element 

subjected to its body forces has partial differential equations representing the stress balance defined 

as follows: 
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where σx and σy are normal stresses in the Cartesian x- and y-coordinate directions, 

respectively; τxy is the shear stress in the xy plane; and Fx and Fy are body forces in the x- and y–

coordinate directions, respectively. 

Partial differential eqs. [13] and [14] can be solved using FlexPDE along with specified 

boundary conditions. The domain of the problem is automatically divided by the computer program, 

FlexPDE, into triangular elements. The variables are presented by a simple polynomial equation over 

the problem domain. FlexPDE uses a Galerkin finite element model, with quadratic- or cubic-based 

functions involving nodal values of system variables. 

 
 

Fig. 4. The analytical scheme of the dynamic programming method in slope stability analyses. 
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The stresses are evaluated and stored at Gaussian points over the domain of the problem 

when solving eqs. [13] and [14] for a specific problem. FlexPDE can interpolate and export stresses 

from Gaussian nodes to the nodes of any arbitrary grid defined by the user. The stresses at the centre 

point of each grid element are interpolated using the interpolation shape functions. The stress-

interpolation process is done prior to the performance of the dynamic programming search. 

 

2.4 Description of the computer program DYNPROG  

The analytical scheme of the dynamic programming method for performing a slope stability 

analysis is illustrated in Fig. 4. The computer program DYNPROG was developed to solve a slope 

stability problem using the following steps. (1) Input the geometry data and soil properties of the 

problem. (2) Import the output grid with corresponding nodal stresses from FlexPDE. (3) Define a 

search boundary using the output grid imported from FlexPDE as the search grid. (4) Interpolate 

stresses at the centre point of each grid element from nodal stresses. (5) Assume an initial factor of 
safety, Fs (i.e., Fs = 1). (6) Launch the search from all state points located in the initial stage. (7) 

Generate  the first trial segment of the slip surface by connecting all state points of the initial stage to 

all state points located in the second stage. (8) Calculate the values of the optimal function obtained 

at all state points of the second stage using eqs. [10] and [11] and the assumed factor of safety, Fs. 

The number of optimal functions to be calculated at one state point of the second stage is equal to the 

number of state points located in the initial stage. (9) Determine the minimum value of the optimal 

function at each state point in the second stage.  The corresponding state point in the previous stage 

(i.e., the initial stage for the first segment) is identified. (10) Proceed to the next stage with the same 

routine until the final stage is reached. (11) Compare the values of the optimal functions obtained at 

all state points of the final stage and determine the state point at which the corresponding value of the 

optimal function is a minimum. The determined state point will be the first optimal point of the 

optimal path. (12) Trace back to the previous stage to find the corresponding state point with the first 

optimal point. This corresponding state point will be the second optimal point of the optimal path. 

(13) Keep tracing back to the initial stage to determine the entire optimal path. (14) Evaluate the 

actual factor of safety corresponding to the optimal path obtained from step 13 using eq. [2-14]. A 

new value for the  factor of safety is calculated based on the initially assumed and the actual factors 

of safety. (15) Repeat the procedure until the difference between the assumed and the actual factor of 

safety is within the convergence criterion, δ, defined prior to the performance of the optimization 
process. (16) Define the actual critical slip surface by determining the entry and exit points of the 

critical slip surface. These points are found at the intersections of the optimal path with the physical 

boundary of the slope. 

 

2.5 Restriction applied to the shape of the critical slip surface 

The shape of the critical slip surface must be kinematically admissible. Baker (1980) assumed 

that the critical slip surface must be concave. Therefore, the condition applied to the shape of the 

critical slip surface proposed by Baker was that the first derivative calculated from the crest to the 

toe of the curve that represents the critical slip surface must be greater than or at least equal to zero. 

Kinematic restriction conditions were not mentioned in Yamagami and Ueta (1988). Zou et al. 

(1995) stated that a check must be made to assure that the critical slip surface is kinematically 

admissible. There was no further comment regarding how this “check” should be applied, however. 

The authors of this article suggest that kinematical restrictions play an important role in the 

applicability of the dynamic programming method in slope stability analysis. Using appropriate 

kinematical restrictions prevents the shape of the critical slip surface from being unreasonable. 
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Fig. 5. Kinematical restrictions applied to the shape of the critical slip surface. 

 

Theoretically, when failure takes place the resisting force and the actuating force along the 

slip surface must be in contrary directions. The resisting force must always act in the direction 

opposite to the mass movement. At the same time, the actuating force must be in the same direction 

as the movement (Fig. 5). 

The kinematical restriction applied to the shape of the critical slip surface in this study is that 

if the actuating force calculated is in a contrary direction to the anticipated direction of mass 

movement, then the entire trial segment in which the actuating force is being calculated will be 

eliminated from the search. In other words, a trial segment will be eliminated from the optimization 

search if the actuating and resisting forces are found having the same sign. Applying this condition to 
the optimization procedure will eliminate all trial segments that constitute kinky-shaped slip surfaces. 

 
CONCLUSIONS 

The dynamic programming method combined with a finite element stress analysis can be a 

viable and valuable tool for practical slope stability analyses. With the use of the finite element stress 

analysis, the present method provides a solution of greater flexibility compared with those produced 

by conventional limit equilibrium methods of slices. 
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