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1. ABSTRACT: 
 A solution of the Einstein equations is by definition cosmological if it can reproduce the 
(FLRW)  metric by taking limiting values of arbitrary constants or functions.  It has been a 
conventional wisdom in cosmology that the FLRW models success fully describe the large scale 
properties of our observed Universe, even since the 1930ies.  At the same time, it has been a 
conventional wisdom in the general relativity theory that finding exact solutions of the Einstein 
equations is extremely difficult and possible only for exceptionally simple cases. These both views 
were challenged repeatedly by lonely rebels, but a few generations of physicists and astronomers 
have been educated with these conventional wisdoms solidly incorporated into their minds.  A s a 
result of it, a large number of literatures have come into existence in which exact solutions 
generalising FLRW were derived and applied to describe our observed Universe.   There are various 
inhomogeneous cosmological  models  in literature and a great majority of them are based on L-T 
model [Lemaitre (1933), Tolman (1934)]. The arbitrary parameters of a solution (constants or 
functions) often enter several physical quantities, and forcing a certain limit upon one of the 
quantities may result in trivializing  others  at  the same  time. 
 
KEY WORDS: thermalized, Locally rotationally symmetric (LRS), nonthermalized, magnetofluid, 
barotropic, Weyl tensor, hypersurfaces 
 
3. INTRODUCTION 
4. The Source of the Energy-momentum Tensor: 
 The physical significance of cosmological models, homogeneous and inhomogeneous, we 
propose to investigate the following cosmological models with heat flux i.e. exact solutions of 
Einstein’s field equations with non thermalized perfect fluid as the source term: 
(i) Plane symmetric inhomogeneous cosmological models with heat flux.  
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(ii) Locally rotationally symmetric (LRS) Bianchi space time filled with perfect fluid and heat flux.  
(iii) A general class of inhomogeneous cosmological models which admits two spacelike commuting 

killing vectors and have separable metric coefficients with nonthermalized perfect fluid as the 
source term of energy momentum tensor. 

 In this way we shall investigate some new and old exact solutions of Einstein’s field 
equations generalising the plane symmetric, locally rotationally symmetric Bianchi space time and 
cylindrically symmetric spacetimes with perfect fluid and heat flux as the source of the energy 
momentum tensor. 
 
5. METHOD: 

The Reimann tensor is defined for a covariant vector  filed  k so that   
 

(1.1)  k
 ;  

     -   k
 ; γ

         =   k ρ 
      R 

ρ

  ;  
   

 
where semicolon denotes  covariant derivative, and comma stands for partial and  ordinary  
derivatives  respectively.  The  
Einstein equations are – 
 

(2)  G               R        -  ½ g  
  R,       

                 =    K  T     +     g
   

(1.3)              K     
    

  8 
   

G/C
4 

 

 where G be the gravitational constant,  the cosmological constant, the energy momentum 

tensor may contain the following  contributions : 
 

(1.4)  T   T
f
  +   T

h  +  T
v
  +  T

n
 +  T

s
 +  T

e
+ T

s
 +  T

m 

 

where: 

 

(i) T
f
 denotes the perfect fluid distribution with  

(1.5)  T
f

 
 = (  + p)  u


  u


  -    p    g

   

 

   being the energy density, p be  the pressure and u

 the velocity field of the fluid.   In 

some cases, the fluid will obey the barotropic equitation of state 
 

(1.6)       f (, p) = 0 
 
  The velocity is normalized 
 

(1.7) u
    u

  =  1 

(1.8)  
and its covariant derivative may be decomposed as   
 

(1.8)  u
;  

  =   ύ
  u 

  +  
 

 +   w 
 

  +  1
--  
3 
 ( g

 
  - u


 u

 ) 

 
where 
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(1.9)   ύ
    =    u

 ; ρ  u
 

 

be the  acceleration vector  obeying    ύ
   

u    =  0 

 (when ύ
 

= 0  the flow lines of the fluid are geodesics) 

 

(1.10)     =   u 
;  

  be the  expansion  scalar 
 

(1.11)   
 

     =  u(
; )    -  ύ (

     u
 )

  -  
--  


3

1
  ( g

 
  - u


 u

 ) 

 

be the shear tensor and is symmetric in its indices and obeys   = 0   =   
 

   u .  The round 

brackets around indices denote symmetrisation and  
 
(1.12)  w

 
    =   u

[;  ]
    -  ύ

 [ 
      u

 ]
    

 
be the rotation tensor and is antisymmetric and obeys  

 

(1.13)    w
 

   u   =  0 

 
 The square bracket around the indices denotes anti - symmetrization.  The shear tensor is 

zero if and only if the shear scalar    defined by   
2 =   ½    

   
  

   
  is zero.  The rotation tensor 

is zero if and only if the rotation scalar  w   defined by  w
2

  = ½    w
 

  w
   

 is  zero. Often the 

special perfect fluid with p = 0 (dust matter) is considered as source. If the dust is the only source, 

then necessarily ύ
 

  = 0. 
 

(ii)   T
h
 denotes the heat flow contribution 

 

(1.14)   T
h

 
     =   q


  u

 
  +   q

 
   u


   

 

 where   q

   be the heat flow  vector  obeying  q


  u


  = 0.  It defines the direction in which 

energy is transported across the flow lines.  One has to assume in addition that the number density 
of the fluid particles,  n  is conserved. 
 

(1.15)   (nu

  )  ;    = 0, 

 
such that  the first law of thermodynamics holds   
 

(1.16) Td  (S/n)  =  d  ( /n)  +  pd  (1/n) 
(1.17)  

where T  be the temperature and  S  be the entropy density and that  
 

(1.17)    q

   = - q  [ ( 


    -   u


   u  )   T;   +   T   ύ


  ] 

 
where  q  be the coefficient  of thermal conductivity 
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(1.18)      S


;          o 

 
   where   
 

(1.19)     S

  -  Su


   +   q


   /  T 

 
In an inhomogeneous cosmological model, spatial variations of temperature are expected.  

It is then natural to suppose that heat transfer between fluid particles occurs.  It is the main 
motivation for considering cosmological solution with heat-flow. 
 

(iii)  T
v
  denotes contribution of viscosity. 

 

(1.20)   T
v

 
  =   

 
        

 

  when     be  the  coefficient of viscosity. 
 

 (iv)  T
n
 denotes the energy momentum tensor of a null fluid.  

 

(1.21)     T
n

 
       =        k

 
   k

  

 

 where  k

  k



 
  = 0  and the vector filed  k


  defines  the direction of flow of  the null fluid.  

When the null fluid is present together with a perfect fluid then  k

  u



 
  = 1  is assumed  in addition.  

If  T =  T
n
   i.e.  if all the other contributions to energy momentum vanishes, then the equati ons of 

motion  T
  

;    
  

=  0  imply that  k is  a  geodesic vector.  The energy momentum  tensor may  be 
generated by a null electromagnetic field. 
 
(v) Ts  denotes the energy momentum tensor of a scalar field.  
 

(1.22)              T
s

 
   =   , 

    


, 
    -   ½   g

 
    (,


 ’


  +  m

2
 ) 

 

  where     be  the scalar  field, obeying 
 

(1.23)    g
 

      
;
 
 

       -  m    =   0 

 
 where  m  is constant, interpreted as the mass of   the field carrier.  In most papers, the 
mass is assumed  zero, and then the energy momentum tensor may be interpreted as due to the 

stiff perfect fluid with equation of state   = p, where 
 

(1.24)     =  p  =   ½  ,

 ’


   

 

(1.25)  u  =  ,    /  (,

 ’


 )

½ 

 
The massive scalar field maybe interpreted as a perfect fluid, too with  
 

(1.26)        =   ½  (,
  

 ’

  -   m

2
 ) 
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(1.27)   p     =   ½  (,

  ’


  +   m

2
 )  

and   u  given  by  eq.  (1.25)  but   the  equation  of  state  is undetermined  when  m  ≠  0.  
 

(iv) T
e
 denotes the energy momentum of the electromagnetic filed.  

 

(1.28)         T
e

 
  =   

4

1
   (F

 

µ
    F

µ 
   + ¼  g

 
  F

µ
  F

µ
 ) 

 
where the electromagnetic  field  tensor F obeys  the Maxwell  relations.  
 

(1.29)    F 
;           =      4   j 

           c 

        

(1.30)   F [ 
 ;

 
 

 ]    =  0 

 

j   being current vector.  The field is known null when  
 

(1.31)   F
µ

    F
µ

       = 0 

 
(1.32)                F  

[      F   ]
  =  0 

 
Then, vector field k and w exist such that 
 

(1.33) k

   k



 
   =  k

 
   w


   = 0,    w

 
 w

  
 =  -  1 

 

(1.34) F
 

  =     (  w
 

   k
 

  -  w
 

   k
 

 )    

 
and the energy  momentum tensor of the field assumes the form  
 

(1.35)  T
n

 
      =     k 

 
    k

 
   

 
With 
 

(1.36)        =  
2
  /  (  4  ) 

 
For the combined solutions with the perfect fluid/ electromagnetic field, it is usually assumed that  
 

(1.37)   j


 
    =    u

 

 

where  be the electric charge density i.e. the electromagnetic  field is produced by charges 
on the matter particles. 

(vii) T
﹩  

   denotes  the energy momentum tensor  associated  with a cloud of strings with 
particles  attached to them  

(1.38)  T
﹩  

 =       u
 

   u
 

   -     w
 

    w
  
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  with 

(1.39) u
 

    u

  =  -  w

 
    w


  =  1 

 

(1.40)  w

     u


   =  0 

 

 where   and     denote the energy density and the string  tension density of the string 
cloud by the relation 
 

(1.41)    =   p +   
 

 where 
p
 is  the particle density in the string cloud.  The energy conditions imply  > o,  

leaving  the sign of  the string  tension density  unrestricted. The unit time like vector  u

  be the 

flow vector of the matter and  space like  vector  w

    specifies the string  direction in the cloud. 

  

(viii)  T
m

 denotes the energy momentum tensor of the perfect  magnetofluid 

(1.42)       T
m

 
  =  ( W + P)  u


   u

 
 -  P g

 
  -    h

 
  h

 
 

(1.43) P  = p   +  ½  |h|
2
    

(1.44) W =   +  ½ µ  |h|
2
    

  with 

(1.45) u

       h


    =  0 

(1.46) h

    h


   =  - |h|

2
       

where  h

  is magnetic  field and  being  constant.   

 
6. CRITERIA FOR A FLRW LIMIT 
 A given metric has a FLRW limit is one of the sets of necessary and sufficient conditions may 
be imposed on it, leading to a nontrivial and nonsingular result. Those conditions are not always 
easy to apply. It is more practical to apply several necessary conditions in succession until the 
solution investigated is either reduced to a FLRW limit or proven not to have it. The necessary 
conditions are: 
(i)the source must be perfect fluid. If the energy momentum tensor of the solution investigated has 
more components, e.g. heat flow, then the additional quantities must be set to zero. It is to be 
noted that a pure scalar field source and dust are special cases of perfect fluid and are compatible 
with the FLRW geometry. Pure null fluid and pure electromagnetic field are not, such solutions have 
no FLRW limit. Also solutions with tachyon fluid source, for which the energy momentum tensor has 
the form 
 

(1.47)   Tf 
    =  (   +  p)     u

    u    -  p g
   

 
 but the vector field  u  is spacelike, have no FLRW limit.  
 
(ii) The acceleration must be zero. In comoving and  synchronous coordinates in which, if they exist. 
 

(1.48)  u
     =    



o 

(1.49)  g
oi  

  =  0,   i  = 1,  2, 3,  

 
The condition has the simple form  
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(1.50)        g
oo

,
i
  =  0,   i  = 1, 2, 3 

(iii)The rotation must be zero i.e. w = o, which is equivalent to the existence of coordinates that are 
simultaneously comoving and synchronous. 

(iv) The shear must be zero i.e.  σ  = o which is equivalent to 

 

(1.51)  ů  g
i j,o

   =  
3

2
     g

i j
,   i,  j  = 1, 2, 3, 

 
and for every pair of nonzero components (g i j, gkl) it may be written as 
 

(1.52)          (ln  g
i j
 ), t   =  (  ln  g

kl
),  t   =  

3

2
      g½

oo 

 

 If any  (ln  gi j ), t   is zero, then   = 0 automatically in the  σ  = 0  limit, and the metric has no 
FLRW limit. If the coordinates are not commoving, but the velocity field is tangent to 2 -surfaces S2 
with the coordinates (t, x1) and the space-time is orthogonally transitive so that g

tA
 = g

1A 
 =0 where 

A = 2, 3, then σ  = 0  implies 
 

(1.53)         u ( ln g
AB

),    = u  (ln  g 
CD

),  =  2/3   

 

for every pair of nonzero (g
AB

,g 
CD),   A,B,C,D = 2,3. Again, if any u  ( ln g

AB
),    = 0,    then = 0 in the  

σ  = 0   limit, and no FLRW limit exists. 
 
(v) The gradient of pressure must be colinear with the  velocity field 
 
(1.54)  u 

[   p,]
 = 0 

 
       For a solution with a pure perfect fluid, it is equivalent to 
 
(1.55)  ύ    =  0 
 
(vi)The gradients of matter density and of the expansion scalar must be collinear with velocity 
(vii)The barotropic equation of state 
 

(1.56)        
[   p,]  = 0 

 
must hold. 
 
(viii)The Weyl tensor must vanish. 
(ix) The hypersurfaces orthogonal to the velocity field must have constant curvature.  
 The arbitrary parameters of a solution (constants or functions) often enter several physical 
quantities, and forcing a certain limit upon one of the quantities may result in trivializing  others  at  
the same  time. For  example, the  limit  
 
(1.57)          σ  = 0 
 

may automatically imply  = 0 (a static solution) or  = 0  (a vacuum solution) or  + P = 0 

(then with a pure perfect fluid source, the Bianchi identities imply  = -  P  constant, an the 
spacetime is a vacuum with cosmological constant Λ). In such case no FLRWE limit exists.  
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7. CONCLUSION: 
The gradient of pressure must be colinear with the  velocity field. The gradients of matter 

density and of the expansion scalar must be collinear with velocity.  
The hypersurfaces orthogonal to the velocity field must have constant curvature. The 

arbitrary parameters of a solution (constants or functions) often enter several physical quantities, 
and forcing a certain limit upon one of the quantities may result in trivializing  othe rs  at  the same  
time. 
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