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INTRODUCTION: :

equations are usefulThe ratio of the
for a wide range ofinertial and viscous
practical problems bytforces  defines i

have some limitations.dimensionless quantit
It is difficult to find | and is termed as th
exact solutions Reynolds number an
is denoted by Re

nature of  thes pLU
equations. Instead ¢f =~ —

Navier Stoke

equations, someWhen the viscou
approximations of forces  are mor¢

these equations arelominant compared t

dfollowing holds:

cReynolds number i
low. In such flows, we
1 neglect the nonlinea
inertial convective

spatial terms in the Navie

1 Stokes equations
which result in simple
linear equations calle
Stokes equations.

yThe
Slows

correspondin
are called
Stokes  flows ot
creeping flows ot
flows at low Reynoldg
number. The physica
5 meaning of low
AReynolds number flov
yor creeping flow is

ghat at least one of théd

(i)

small length scales (ii

high viscous fluids
(i) very small
velocities. The

theory, micro-
organism locomotion
and many bio-physical
and geophysical
subjects. The study of
Stokes[2] equations
has always attracted
researchers due to
their innumerable
applications in science
and industry.
sUnsteady and steady
Stokes flows have
[Joeen an important
subject of study for
- mathematicians as
.well as  engineers
'leading to an
ginteresting
mathematical theory
and also a wide variety
of applications.
Another area of fluid
dynamics that has
drawn  considerable
interest of scientists
yand engineers is the
flow through porous

J

/media due to
numerous applications
in science and

industry. The Darcy
equationst31 and
Brinkman

equationst4l are two
commonly used

hydromechanics

5low Reynolds numng

>flows play a dominan
prole in the study o

models employed for
low and high porosity
systems. The
e Brinkman  equations
can be considered to

sometimes used, the inertial forces, the

theology, lubrication
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be a modification of Darcy equations and accounttlie balance of viscous forces and damping
forces. In fact, Brinkman equations approximatethe Darcy equations for small values of
permeability and to the. Stokes equations for largie@es of permeability. Another approximation
which is also obtained by a process of linearizatibthe Navier-Stokes equations, resulting in what
are known as Oseen equationsf51, is also sometisextk We briefly describe some aspects of the
unsteady and steady Stokes equations, Brinkmartieqs@nd Oseen equations in the following few
sections.

1 Unsteady and Steady Stokes Equations

Unsteady Stokes equations:

The equations of motion for the unsteady Stokes @iban incompressible fluid in

the absence of any external forces are given by
oV

G e (1.1)
VN =) (1.2)
We rewrite equation (1.1) as
j (V° — lﬁ) V.=Nbp
v ot (1.3)

wherev = (Wp) is the coefficient of kinematic viscosity. Frotretabove equations (1.1) and
(1.2), we get the following.
1. By taking divergence of (1.1) and using equafiog), we find that pressure is harmonic.
2. On operating\?on both sides of (1.3), we can verify that any SotuV of (1.1) and (1.2) satisfies
the equation
18,

Vi(V?-=-=)V =0.
V. aw (L4)
3.0n operating Curl on either sides of equatiod)(lwe find that the vorticity CurlV satisfies the
equation
(V2 - i—Q)(Cuer) =

v Ot (1_5)
Steady Stokes equations:
The equations of motion for the steady flow of @eompressible, viscous fluid in the

absence of external forces at low Reynolds numieer a
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2% ,
uN N, = %p, (1.6)

We observe from the equations (1.6) and (1.7)greatd CurlV are harmonic and V is biharmonic.

2 Brinkman Equations
Brinkman's equations[4] were originated to estintate permeability of porous media. The
Brinkman equations are given by
Frsi s Y
k (2.1)

where k is the coefficient of permeability of theedium. Let (V, p) be a solution of

Brinkman equations. It can be observed that prishbaic and V satisfies the equation

Wherel? = %We also note that CurlV satisfies the equation

(V2 = A)CurlV = 0. (2.4)

3 OSEEN EQUATIONS

Stokes[2] equations have been studied elaboratelgesearchers due to their innumerable
applications in science and industry. It has bdeseosed that the problem of a uniform flow past an
infinite cylinder cannot be solved exactly. Thisans no solution to the Stokes equations can be
found which satisfies the no slip boundary condgi®mn the surface of the cylinder and also the
condition of uniform flow at infinity. This is knowas the Stokes paradox. This Stokes paradox was
solved by Oseent51 in 1910. The limitations of $to#tow in providing a satisfactory explanation of
Stokes paradox or in, explaining the validity obl&s equations at sufficiently large -distancemfro
an obstacle have prompted Oseen [5] to propose avhatow commonly known as ()seen equations.
It was suggested by him that the inertia terms khbe retained -in the far field where the velocgty
approximately equal to k{ where U > 0 andk is the unit vector in the fixed z-direction. These
eguations too have been studied extensively.

The equations governing the steady Oseen [5] flomnancompressible fluid are given

by
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OV . "
pU ot —Vp+ uV<V, (3.1)
Wy

(3.2)
These equations are obtained by linearizing theid¥&étokes equations by taking V' =V +

Uk and neglecting terms of the second order in tiecity components. We rewrite equation (3.1)

as

5 Vv
w(VV — '21;:80

G (3.3)

where k = U/2v It can be observed that pressusehaimonic and V satisfies the equation

Vi(V? - ‘ZA:—8~)V =0
0z (3.4)

We also note that Curl V satisfies the equation

(V2 — 2k 2

CurlV) =0.
z)( urlV) (3.5)

We can solve the above stated equations of motomguanalytical or numerical methods.
Few analytical methods are available for solving &bove stated equations of motion. Chadwick et
al. [6] gave a method of representing any divergdnee (solenoidal) vec—tor field V expressed in
terms of two scalar functions. This representatiad been exploited by Padmavathi et al. [7], [8] to
introduce certain general solutions of Stokes[d] Brinkman [8] equations. This representation has
the following advantages: it is simple to use, sbalars can be found very easily for many types of
fluid flows and the boundary conditions formulatedterms of these scalars are in a very simple
form. The complexity of the equations is reducedces these scalar functions satisfy simple partial
differential equations, whose solutions are in gah&nown. We shall solve the above stated
equations of motion based on the fact that velasitlivergence free (solenoidal) in them.

A solution of the equations of motion which is sukht every other solution can be obtained
from it is said to be a complete general solutionthis thesis, we discuss the complete general
solutions of homogeneous and non-homogeneous alys&iakes equations which are suitable for
boundary value problems dealing with spherical loewamies and also discuss some complete
general solutions of Stokes, Brinkman and Oseeiateans which are suitable for discussing flow

problems dealing with plane boundaries.
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4 FUNDAMENTAL SOLUTIONS

The fundamental solution of (1.6) and (1.7) whigpresents a point force was initially
obtained by Oseen [5] and was named as 'Stokbglétancock [14]. The Curl of this fundamental
solution is called a 'rotlet’. By taking the diiecal derivatives of these singular solutions, othe
higher order singular solutions can obtained (Clgrvamd Wu[15]).
Stokedet: Consider the non-homogeneous Stokes equatiofineipresence of an exter-nal forge f
(r)

YN =0 4.2)
where r is the position vector. Then the primargdamental solution is associated with a
singular point force located at the origin f, =8t5(r), a being a constant vector aiadr) the three

dimensional Dirac delta-function. We denote theogry, pressure and vorticity corresponding to
this solution by {, ps andés given by

« 1
Vs(r;a) = ?Jr(a.r);ﬂ-g, 4.3)
5 o r
L e (4.4)
Edra)l = 3N x X
3

o (4.5)
Using the expression for Stokeslet we can find EX§jressions for higher order singularities
Stokes doublet, Stokes quadruple, rotlet, strassnlg potential doublet.

VSD(I';OL,ﬁ) = —(IB-V)VS(I',CY), (46)
pso(r;e, B) = —(B-V)Vs(r,a), (4.7)
Vsa(ria, 8,7) = (v-V)B-V)Vs(r,a), 44
psa(rio, B,7) = (v- V(B -V)Vs(r, o), (4.9)

wherea, B andy are constant vectors constituting the pole momandisthe suffixes SD and
S4 are ued to denote the flow quantities of thé&&taoublet and Stokes quadruple respectively.
The antisymmetric component of a Stokes doubleth(vaspect to an interchangeco&ndp)

is called a rotlet (also called a couplet by Balwtj#]) and its velocity and pressure are given by
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1 1
§[V.9D(1‘;ﬁ, a) — Vgp(r;o,8)] = 5V x Vg(r;7),

Vge(r;y) =
gy eaie e
o Ve o e (4.10),
1
pr(r;y) = 5[1050(1“;5, o) — psp(r;a, B)] = 0. (.10

The symmetric component of Stokes doublet is callsttesslet. Its velocity and pressure are

given by
V@mmm—-rf+ﬂ”%ﬂ”%,
¢ J (4.12)
+ 3(a . rzgﬁ : r)}

pss(r;o,B) =
(4.13)

The velocity and pressure of a potential doubletgaven by

= & Vmear e

Vp(r,d) = V(V 7_)—7'34-3(5 r)'rS_ 2V V(r, 6), (4.14)
e

po(r,8) = 5V'ps(r,d). (4.15)

wheres is the doublet strength.

UNSTEADY STOKESLET :
The fundamental solution of (1.1) and (1.2) whielpresents a point force given in[16] is

called as an 'unsteady Stokeslet'. Consider tloxiglfield due to an unsteady point force Fi le@cht
at the origin. Then the velocity components forumsteady Stokeslet in cartesian coordinates are

given by
U= . <X(R)E 4 )(R)Iv;j gt
8 2 ¥ (4.16)
v = i(Y(R):C—g) Giwt,
8T r (4.17)
ey i / ~I__7’_ wwt
T s <} (R) r3> e (4.18)
F i1 :
e ciir
dn A0z 7 (4.19)
where
6
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a 1 1 2

)((R) = 2e P(1+E+—R—2>—R§,

3 3 6

— "2 _R]_ Sair e oy

Y(R) e (+R+R2)+R3
B 3 3=

Oseenlet
The fundamental solution of (3.1) and (3.2) whiepresents a point force was obtained by
Oseen (5] and was named as ‘Oseenlet'. Consid@seenlet due to a point forcek@cated at the

origin. Then the velocity components for an Osedenleartesian coordinates are[17]

= _G 2 1 - e—k(7~z)
e 4wpU Ox \ r r : (4.20)
L ey
e ArpU Oy \ r T . (4.21)
= —k(r—2) a
fls= G [2 (1 et )> e .2_1”6/“(“2)} )
ArpU |0z \r r r (4.22)
where = (@ +y? +2%)'/2.
1.3 1
gress e gk
47 0z 1 4.13)
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