

Review Of Research

QUASI K-IDEALS IN INTRA K-REGULAR Γ –SEMIRINGS

Alandkar S. J.

Head, Department of Mathematics, Walchand College of Arts & Science, Solapur.

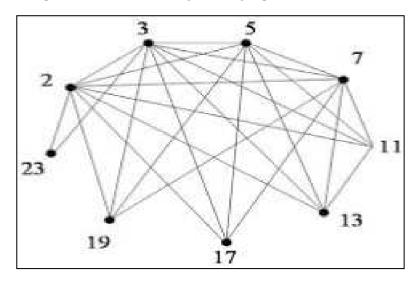
ABSTRACT. A Γ -semiring M whose additive reduct is a semilattice, is called an intra k-regular Γ -semiring if for each a \in S there exists $x \in$ M such that $a + x\alpha a\alpha a\alpha x = x\alpha a\alpha a\alpha x$, $\alpha \in \Gamma$. Here we introduce quasi k-ideals in Γ -semirings and characterize both the k-regular and intra k-regular Γ -semirings by their quasi k-ideals.

Mathematics Subject Classi cation(2010). 16Y60.

Keywords: Quasi k-ideals, k-regular Γ -semirings, intra k-regular Γ -semirings.

1 INTRODUCTION.

Otto Steinfeld [17], [18], [19], [20] introduced the notion of quasi ideals in rings and semigroups. Quasi ideals are generalizations of both left ideals and right ideals as well as a particular case of bi-ideals. S. Lajos [10] defined a generalization of this notion namely the (m,n)-quasi ideal. Lajos[11] also characterized the quasi ideals in regular semigroups. Kapp [8] observed that quasi ideal can also be obtained by an absorbant semigroup with 0 and every $\mathcal H$ -class together with 0. Many authors in [7], [9], [5] characterized the quasi ideals of different classes of semigroups and semirings. Von Neumann[12] defined a ring R to be regular if the multiplicative reduct (R, .) is a regular semigroup.



Semirings in SL+ by their different types of ideals are studied in [1]. Bourne [4] introduced the k-regular semirings as a generalization of regular rings. Further these semirings have been studied by Sen, Weinert, Bhuniya, Adhikari [1], [14], [15], [16]. For any semigroup F, the semiring P(F) of all subsets of F is a k-regular semiring if and only if F is a regular semigroup [16]. We have introduced the intra k-regular semirings as the class of semirings to which the semiring P(F) belong when F is an intra regular semiring [3]. Also a semiring S is intra k-regular if and only if every k-ideal of S is semiprime.

Rao M. K.[13] defined Γ -semiring as generalization of semiring and Γ -rings. Alandkar S. J.[2] studied and characterize the k-regular Γ -semirings by their quasi k-ideals. And studied the notion of quasi k-ideals in a semiring and characterize the k-regular semirings using quasi k-ideals. In this paper we used the quasi k-ideals to characterize the intra k-regular Γ -semirings and the Γ -semirings which are intra k-regular.

2. PRELIMINARIES.

Recall the definitions from[2]

Definition 2.1. Γ - semiring. Let (M, +) and $(\Gamma, +)$ be commutative semigroups. Define the mapping $M \times \Gamma \times M \to M$ (image to be denoted by $(x, \alpha, y) \to x\alpha y$) satisfying the following conditions:

- i) $x\alpha y \in M$,
- ii) (x+y) $\alpha z = (x\alpha z) + (y\alpha z)$, $x(\alpha + \beta)z = x\alpha z + x\beta z$, $x\alpha(y+z) = x\alpha y + x\alpha z$,
- iii)(x α y) β z = x α (y β z), for all x, y, z \in M and all α , β \in Γ .

Then M is a Γ - semiring.

Every Γ -ring is a Γ - semiring but every Γ -semiring need not be a Γ -ring. For this we consider the following Example.

Example 1. Let $M = \Gamma = (Z^+, +)$ be the semigroup of all nonzero positive integers. Define the mapping $M \times \Gamma \times M \to M$ (image to be denoted by $(x, \alpha, y) \to x\alpha y$) where $x\alpha y$ is the usual multiplication of the x, α and y for all x, $y \in M$ and all $\alpha \in \Gamma$. Then M is a Γ -semiring but not a semiring.

Definition 2.2. Sub-Γ-semiring.Let M be a Γ-semiring. A nonempty subset S of M is a sub-Γ-semiring of M if S itself is a Γ-semiring with the same operations of Γ-semiring M.

Definition 2.3. Ideal of a Γ-semiring. A nonempty subset I of a Γ-semiring M is a left (resp. right) ideal of M if for x, $y \in I$ and $r \in M$ we have $x+y \in I$ and $r\alpha x \in I$ (resp. $x\alpha r \in I$), where $\alpha \in \Gamma$. If I is both left as well as right ideal then we say that I is an ideal of M.

Example 2. Consider the Example of the Γ -semiring M followed by the definition. Here $I = (2Z^+, +, \Gamma)$ is an ideal of M. Following are the definitions introduced for generalization of algebraic structure semigroups, semilattice, semiring, reduct by considering set Γ of operations:

Definition 2.4. A band is a Γ -semigroup in which every element is an idempotent. A commutative band is called a Γ -semilattice. Throughout this paper, unless otherwise stated, M is always a Γ -semiring whose additive reduct is a Γ -semilattice and the variety of all such Γ -semirings is denoted by ML+.

Definition 2.5. A non-empty subset L of a Γ -semiring M is called a left ideal of M if L + L \subseteq L and M Γ L \subseteq L. The right ideals are defined dually. A subset I of M is called an ideal of M if it is both a left and a right ideal of M. A non-empty subset A is called an interior ideal of M if A + A \subseteq A and M Γ A Γ M \subseteq A. A non-empty subset A of M is called semiprime if for a \in M, a^2 =a α a \in A implies that a \in A.

Definition 2.6. Henriksen [6] defined an ideal (left, right) I of a semiring S to be a k-ideal (left, right) if for a; $x \in S$, a; $a + x \in I$) $x \in I$. We extend this concept to Γ-semiring

We define interior k-ideal similarly.

Definition 2.7. A non-empty subset A of M is called a k-subset of Γ -semiring M if for $x \in M$, $a \in A$; $x + a \in A$ implies that $x \in A$.

Definition 2.8. The k-closure \bar{A} of a non-empty subset A is given by,

```
\bar{A} = \{x \in S \mid \exists a, b \in A \text{ such that } x + a = b \}.
```

This is the smallest k-subset containing A. If A and B be two subsets of M such that $A \subseteq B$ then it follows that $\bar{A} \subseteq \bar{B}$. Since the additive reduct (M, +) is a Γ -semilattice, it follows that an ideal (left, right) K of M is a k-ideal(left, right) if and only if $\bar{K} = K$.

Definition 2.9. A sub Γ -semiring Q is called a quasi ideal of M if $Q\Gamma M\cap M\Gamma Q\subseteq Q$. A quasi ideal Q is called a quasi k-ideal of M if Q=Q.

For examples of quasi k-ideals of a Γ -semiring we would like to explore the following natural connection between quasi ideals of a Γ -semigroup F and quasi k-ideals of the Γ -semiring P(F) of all subsets of F.

Definition 2.10. Let F be a Γ-semigroup and P(F) be the set of all subsets of F. Define addition and multiplication on P(F) by:

```
U + V = U \cup V and
```

```
U \Gamma V = \{a\alpha b / a \in U; b \in V, \alpha \in \Gamma\} \}, for all U, V \in P(F),
```

Then $(P(F); +; \alpha)$, $\alpha \in \Gamma$ is a Γ -semiring whose additive reduct is a Γ -semilattice. Then we have the following result.

Theorem 2.11 Let F be a semigroup. Then Q is a quasi k-ideal of P(F) if and only if Q = P(P) for some quasi-ideal P of F.[2]

Lemma 2.12. Let S be a semiring. Then for all right k-ideal R and left k-ideal L of S, $R \cap L$ is a quasi k-ideal of S.[2]

Lemma 2.13. Let M be a Γ -semiring and $a \in M$.

1. Then the principal left k-ideal of M generated by a is given by $L_k(a) = \{u \in M \ / \ u + a + s\alpha a = a + s\alpha a, \text{ for some } s \in M, \ \alpha \in \Gamma \}$. 2. Then the principal right k-ideal of M generated by a is given by $R_k(a) = \{u \in M \ / \ u + a + a\alpha s = a + s\alpha a, \text{ for some } s \in M, \ \alpha \in \Gamma \}$.

Bourne [3] defi ned a Γ -semiring M to be regular if for each $a \in M$ there exist $x, y \in M$ such that $a + a\alpha x\alpha a = a\alpha y\alpha a$, for $\alpha \in \Gamma$. If a Γ -semiring M happens to be a ring then the Von Neumann regularity and the Bourne regularity are equivalent. This is not true in a Γ -semiring in general (For counter example we refer [12]). Adhikari, Sen and Weinert [1] renamed the Bourne regularity of a Γ -semiring as k-regularity to distinguish from the notion of Von Neumann regularity.

Definition 2.14. A Γ-semiring M is called a k-regular Γ-semiring if for each $a \in M$ there exist $x, y \in M$ such that $a + a\alpha x\alpha a = a\alpha y\alpha a, \alpha \in \Gamma$.

```
Since (M, +) is a semilattice,
```

```
we have a + a\alpha x\alpha a = a\alpha y\alpha a \Rightarrow a + a\alpha x\alpha a + (a\alpha x\alpha a + a\alpha y\alpha a) = a\alpha y\alpha a + (a\alpha x\alpha a + a\alpha y\alpha a)
\Rightarrow a + a\alpha (x+y)\alpha a = a\alpha (x+y)\alpha a.
```

Thus, a Γ -semiring M is k-regular if and only if for all $a \in M$ there exists $x \in M$ such that $a + a\alpha x \alpha a = a\alpha x \alpha a$.

Let M be a k-regular Γ -semiring and $a \in M$. Then there exists $x \in M$ such that $a + a\alpha x\alpha a = a\alpha x\alpha a$. Then we have $a + a\alpha x\alpha a = a\alpha x\alpha a \implies a + a\alpha x\alpha (a + a\alpha x\alpha a) = a\alpha x\alpha (a + a\alpha x\alpha a)$

```
\implies a + a\alpha x \alpha a \alpha x \alpha a \a
```

Thus, a Γ -semiring M is k-regular if and only if for all $a \in M$ there exists $x \in M$ such that

```
a + a\alpha x \alpha a \alpha x \alpha a = a\alpha x \alpha a \alpha x \alpha a \dots (1)
```

For examples and properties of k-regular Γ -semiring s we refer [2], [14], [15], [16].

We observe that the proof of this result can be made signicantly simpler when the Γ -semiring M is taken from ML+.

Theorem 2.15.[2] Let M be a Γ -semiring . Then M is k-regular if and only if $\overline{R\Gamma L} = R \cap L$ for any right k-ideal R and left k-ideal L of M.

Theorem 2.16.[2] Let M be a k-ideal of M if and only if k-regular Γ -semiring and A be a non-empty subset of M. Then A is a quasi $A = \overline{R\Gamma L}$, where R is a right k-ideal and L is a left k-ideal of M.

Theorem 2.17.[2] For a Γ -semiring M the following conditions are equivalent:

- 1. M is k-regular.
- 2. $Q = \overline{Q}\Gamma M \overline{\Gamma} Q$ for every quasi k-ideal Q of M.

Theorem 2.18.[2] For a Γ -semiring M the following conditions are equivalent:

- 1. M is k-regular.
- 2.Q \cap J = $\overline{Q\Gamma J\Gamma Q}$ for every quasi k-ideal Q and every k-ideal J of M.
- 3.Q \cap I = $\overline{Q\Gamma I \Gamma Q}$ Q for every quasi k-ideal Q and every interior k-ideal I of M.

Theorem 2.19.[2] For a Γ -semiring M the following conditions are equivalent:

- 1. M is k-regular.
- 2. $R \cap L \subseteq \overline{R \Gamma L}$ for every right k-ideal R and every left k-ideal L of M.
- 3. $Q \cap L \subseteq \overline{Q \Gamma L}$ for every quasi k-ideal Q and every left k-ideal L of M.

Theorem 2.20.[2] For a Γ -semiring M the following conditions are equivalent:

- 1. M is k-regular.
- 2.Q \cap R \subseteq $\overline{R\Gamma Q}$ for every quasi k-ideal Q and every right k-ideal R of M.

Theorem 2.21.[2] For a Γ -semiring M, the following conditions are equivalent:

- 1. M is k-regular.
- $2.R \cap Q \cap L \subseteq \overline{R\Gamma Q\Gamma L}$ for every right k-ideal R, every quasi k-ideal Q and every left k-ideal L of M.

3. QUASI IDEALS IN INTRA K-REGULAR Γ -SEMIRINGS.

In this section we characterize intra-k-regular Γ -semirings using quasi-k-ideals. For a semigroup F, the Γ -semiring P(F) is intra k-regular if and only if F is an intra regular semigroup [3]. Again the Theorem 2.2 shows that the quasi k-ideals are natural analogue in Γ -semiring s of the notion of quasi ideals of a semigroup. Thus it is natural to extend the results, characterising the intra regular semigroups by quasi ideals to Γ -semirings.

Definition 3.1. A Γ -semiring M is called an intra k-regular Γ -semiring if for each $a \in M$, $\alpha \in \Gamma$, $a \in \overline{M\Gamma a^2 \Gamma M}$. It is easy to check that a Γ -semiring M is intra k-regular if and only if for each $a \in M$ there exists $x \in M$ such that

 $a + x\alpha a\alpha a\alpha x \in x = x\alpha a\alpha a\alpha x \in x, \alpha \in \Gamma.$ Where $a\alpha a = a^2$ (2)

In the following theorem we characterized the intra k-regular Γ -semirings by their left and right k-ideals.

Theorem 3.2 ([3]) Let $(M, +, \Gamma)$ be a Γ -semiring . Then the following conditions are equivalent:

- 1. M is intra k-regular.
- 2. $L \cap R \subseteq \overline{L\Gamma R}$ for every left k-ideal L and every right k-ideal R of M.

We left it to check to the readers that a Γ -semiring M is both k-regular and intra k-regular if and only if for each $a \in M$ there exists $z \in M$ such that $a + a\alpha z\alpha a^2 z\alpha a = a\alpha z\alpha a^2 z$ a, $\alpha \in \Gamma$.

Theorem 3.3 For a Γ -semiring M, the following conditions are equivalent:

- 1. M is both k-regular and intra k-regular.
- 2. $Q = \overline{Q^2}$. for every quasi k-ideal Q of M.

Proof. (1) \Rightarrow (2): Let Q be a quasi k-ideal of M and $a \in Q$. Since M is both k-regular and intra k-regular there exists $x \in M$ such that $a + a\alpha x\alpha a^2\alpha x\alpha a = a\alpha x\alpha a^2\alpha x\alpha a$, $\alpha \in \Gamma$. However $a\alpha x\alpha a \in Q$ Γ $M\Gamma Q \subseteq Q\Gamma M \cap M\Gamma Q \subseteq Q$ implies that $a \in Q^2$. Hence $Q \subseteq \overline{Q^2}$. Again, since Q is a k-sub- Γ -semiring , it follows that $Q^2 \subseteq Q$, whence $\overline{Q^2} \subseteq Q$. Thus $Q = \overline{Q^2}$.

 $(2)\Rightarrow (1)$: Let L and R be a left k-ideal and a right k-ideal of M respectively. Then $Q=R\cap L$ is a quasi k-ideal of M. Then $R\cap L=\overline{(R\cap L)^2}=\overline{(R\cap L)\Gamma(R\cap L)}\subseteq \overline{R\Gamma L}\cap \overline{L\Gamma R}$. Thus M is both k-regular and intra k-regular, by Theorem 3.6 in [1] and Theorem 3.2.

Theorem 3.4. For a Γ -semiring M, the following conditions are equivalent:

- 1. M is k-regular and intra k-regular.
- 2. $P \cap Q \subseteq \overline{P}\overline{P}Q$ for every quasi k-ideals P and Q of M.
- 3. B \cap Q $\subseteq \overline{B}\overline{\Gamma}\overline{Q}$ for every k-bi-ideal B and every quasi k-ideal Q of M.
- 4. $P \cap B \subseteq \overline{P\Gamma B}$ for every quasi k-ideal P and every k-bi-ideal B of M.
- 5. $G \cap Q \subseteq \overline{G \Gamma Q}$ for every generalized k-bi-ideal G and every quasi k-ideal Q of M.
- 6. $P \cap G \subseteq \overline{P\Gamma G}$ for every quasi k-ideal P and every generalized k-bi-ideal G of M.

Proof. It is clear that $(6) \Rightarrow (4) \Rightarrow (2)$ and $(5) \Rightarrow (3) \Rightarrow (2)$. So we have to prove $(1) \Rightarrow (6)$, $(1) \Rightarrow (5)$ and $(2) \Rightarrow (1)$.

(1) \Rightarrow (6): Let P and G be a quasi k-ideal and a generalized k-bi-ideal of M respectively. Let $a \in P \cap G$. Since M is both k-regular and intra k-regular, there exists $x \in M$, $\alpha \in \Gamma$ such that $a + a\alpha x\alpha a^2\alpha x = a\alpha x\alpha a^2\alpha x$, by(3). Then $a\alpha x\alpha a \in P \cap M \cap M \cap P \subseteq P$ and $a\alpha x\alpha a \in G \cap M \cap G \subseteq G$ implies that $a\alpha x\alpha a^2\alpha x \in P \cap G$ and so $a \in P \cap G$. Thus $P \cap G \subseteq \overline{P \cap G}$.

- $(1) \Rightarrow (5)$: Similar to $(1) \Rightarrow (6)$.
- (2) \Rightarrow (1) :Let Q be a quasi k-ideal. Then $Q \cap Q \subseteq \overline{Q} \Gamma Q$ Also $\overline{Q} \Gamma Q \subseteq Q$, since Q is a sub Γ -semi ring and k-set. Thus $Q = \overline{Q}^2$ and so M is both k-regular and intra k-regular, by Theorem 3.3.

Theorem 3.5 For a Γ -semiring M, the following conditions are equivalent:

1.M is k-regular and intra k-regular.

- $2.L \cap R \subseteq \overline{L\Gamma R} \cap \overline{R\Gamma L}$ for every left k-ideal L and every right k-ideal R of M.
- $3.L \cap Q \subseteq \overline{L\Gamma Q} \cap \overline{R\Gamma L}$ for every left k-ideal L and every quasi k-ideal Q of M.
- $4.R \cap Q \subseteq \overline{R\Gamma Q} \cap \overline{Q\Gamma R}$ for every right k-ideal R and every quasi k-ideal Q of M.
- $5.P \cap Q \subseteq \overline{Q\Gamma P} \cap \overline{P\Gamma Q}$ for all quasi k-ideals P and Q of M.
- $6.Q \cap B \subseteq \overline{Q\Gamma B} \cap \overline{B\Gamma Q}$ for every quasi k-ideal Q and every k-bi-ideal B of M.
- $7.Q \cap G \subseteq \overline{Q\Gamma G} \cap \overline{G\Gamma Q}$ for every quasi k-ideal Q and every generalized k-bi-ideal G of M.
- **Proof.** It is clear that $(7) \Rightarrow (6) \Rightarrow (5) \Rightarrow (4) \Rightarrow (2)$ and $(5) \Rightarrow (3) \Rightarrow (2)$. So we are to prove $(1) \Rightarrow (7)$ and $(2) \Rightarrow (1)$ only.
- $(1)\Rightarrow (7): \text{Let }G\text{ be a two generalized }k\text{-bi-ideal and }Q\text{ be a quasi }k\text{-ideal of }M\text{. Let }a\in G\cap Q\text{. Since }M\text{ is both }k\text{-regular and intra }k\text{-regular, there exists }x\in M\text{ such that }a+a\alpha x\alpha a^2\alpha x\alpha a=a\alpha x\alpha a^2\alpha x\alpha a\text{. This can be written }\alpha\in \Gamma\text{ }a\alpha s\alpha a+(a\alpha x\alpha a)\alpha(a\alpha x\alpha a)=(a\alpha x\alpha a)\alpha(a\alpha x\alpha a)\text{. Now }a\alpha x\alpha a\in Q\Gamma M\Gamma Q\subseteq Q\Gamma M\cap M\Gamma Q\subseteq Q\text{ and }a\alpha x\alpha a\in G\text{. Then }\alpha\in \Gamma\text{ }(a\alpha x\alpha a)\alpha(a\alpha x\alpha a)\in G\Gamma Q\text{. Thus }a\in \overline{Q\Gamma G}\text{ and }a\in \overline{G\Gamma Q}\text{. Therefore }a\in \overline{Q\Gamma G}\cap \overline{G\Gamma Q}\text{. Hence }G\cap Q\subseteq \overline{G\Gamma Q}\cap \overline{Q\Gamma G}\text{.}$
- $(2)\Rightarrow (1)$: Let $L\cap R\subseteq \overline{L\Gamma R}\cap \overline{R\Gamma L}$. Then $L\cap R\subseteq \overline{L\Gamma R}$ and $L\cap R\subseteq \overline{R\Gamma L}$. Thus M is both k-regular and intra-k-regular by Theorem 3.6 of [1] and Theorem 3.2.

Theorem 3.6 For a Γ -semiring M, the following conditions are equivalent:

- 1. M is k-regular and intra k-regular.
- $2.Q \cap L \subseteq \overline{Q\Gamma L\Gamma Q}$ for every quasi k-ideal Q and every left k-ideal L of M.
- $3.Q \cap R \subseteq \overline{Q\Gamma R\Gamma Q}$ for every quasi k-ideal Q and every right k-ideal R of M.
- $4.Q \cap P \subseteq \overline{Q\Gamma P\Gamma Q}$ for all quasi k-ideals Q and P of M.
- $5.Q \cap B \subseteq \overline{Q\Gamma B\Gamma Q}$ for every quasi k-ideal Q and every k-bi-ideal B of M.
- $6.Q \cap G \subseteq \overline{Q\Gamma G\Gamma Q}$ for every quasi k-ideal Q and every generalized k-bi-ideal G of M.
- $7.B \cap Q \subseteq \overline{B\Gamma Q\Gamma Q}$ for every k-bi-ideal B and every quasi k-ideal Q of M.
- $8.G \cap Q \subseteq \overline{G\Gamma Q\Gamma G}$ for every generalized k-bi-ideal G and every quasi k-ideal Q of M.
- **Proof.** It is clear that $(8) \Rightarrow (7) \Rightarrow (4) \Rightarrow (3)$ and $(6) \Rightarrow (5) \Rightarrow (4) \Rightarrow (2)$. So it is sufficient to prove $(1) \Rightarrow (8)$, $(1) \Rightarrow (6)$, $(3) \Rightarrow (1)$ and $(2) \Rightarrow (1)$.
- \Rightarrow (8): Let G be a generalize k-bi-ideal and Q be a quasi k-ideal of M. Let $a \in G \cap Q \subseteq M$. Since M is both k-regular and intra k-regular, there exists $x \in M$, $\alpha \in \Gamma$ such that
- $a + a\alpha x\alpha a^2\alpha x\alpha a = a\alpha x\alpha a^2\alpha x\alpha a$
- $\Rightarrow a + a\alpha x\alpha a^{2}\alpha x\alpha (a + a\alpha x\alpha a^{2}\alpha x\alpha a) = a\alpha x\alpha a^{2}\alpha x\alpha a (a + a\alpha x\alpha a^{2}\alpha x\alpha a)$
- \Rightarrow a + a\alpha x\alpha a² \alpha x\alpha a = a\alpha x\alpha a² \alpha x\alpha a² \alpha x\alpha a, \alpha \in \Gamma
- $\Rightarrow a + (a\alpha x\alpha a)\alpha(a\alpha x\alpha a\alpha x\alpha a)\alpha(a\alpha x\alpha a) = (a\alpha x\alpha a)\alpha(a\alpha x\alpha a\alpha x\alpha a)\alpha(a\alpha x\alpha a).$

Now $(a\alpha x\alpha a) \in G$ and $(a\alpha x\alpha a\alpha x\alpha a) \in Q\Gamma M\Gamma Q \subseteq Q\Gamma M \cap M\Gamma Q \subseteq Q$. Then $(a\alpha x\alpha a)\alpha (a\alpha x\alpha a\alpha x\alpha a)\alpha (a\alpha x\alpha a) \in GQG$. Thus $a \in \overline{G\Gamma Q\Gamma G}$. Hence $G \cap Q \subseteq \overline{G\Gamma Q\Gamma G}$.

- $(1) \Rightarrow (6)$: Proceeding as above we can similarly prove that $Q \cap G \subseteq \overline{G} \Gamma Q \Gamma G$
- $(2)\Rightarrow (1): \text{Let } L \text{ and } R \text{ be a left } k\text{-ideal and a right } k\text{-ideal of} \quad M \text{ respectively. Then } Q=R\cap L \text{ is } \underline{a \text{ quasi } k\text{-ideal of}} \quad M.$ Therefore $Q\cap L\subseteq \overline{Q\Gamma L\Gamma Q}$ implies that $R\cap L=R\cap L\cap L=\overline{(R\cap L)\Gamma L\Gamma (R\cap L)}\subseteq \overline{R\Gamma L\Gamma (R\cap L)}\subseteq \overline$
- $(3) \Rightarrow (1)$: Similar to $(2) \Rightarrow (1)$.

Theorem 3.7 For a Γ -semiring $(M, +, \Gamma)$, the following conditions are equivalent:

- 1. M is k-regular and intra k-regular.
- 2. $Q \cap R \cap L = \overline{Q\Gamma R\Gamma L}$ for every quasi k-ideal Q, every right k-ideal R and every left k-ideal L of M.
- **Proof.** (1) \Rightarrow (2): Assume that M is a k-regular and intra k -regular Γ -semiring . Let R, Q and L be a right k-ideal, a quasi k-ideal and a left k-ideal of M respectively. Let a \in Q \cap R \cap L. Since M is k-regular there exist $x \in$ M such that $a + a\alpha x\alpha a^2\alpha x\alpha a = a\alpha x\alpha a^2\alpha x\alpha a$, $\alpha \in \Gamma$. This can be written as $a + (a\alpha x\alpha a)\alpha(a\alpha x)\alpha a = (a\alpha x\alpha a)\alpha(a\alpha x)\alpha a$. Since R is a right k-ideal and Q is a quasi k-ideal of M, so $a\alpha x \in$ R and $a\alpha x\alpha a \in$ Q Γ M Γ Q \subseteq Q Γ M \cap M Γ Q \subseteq Q. Thus $(a\alpha x\alpha a)\alpha(a\alpha x)\alpha a \in$ Q Γ R Γ L. Then $a \in \overline{Q\Gamma}$ R Γ L. Hence Q \cap R \cap L $\subseteq \overline{Q\Gamma}$ R Γ L.
- $(2)\Rightarrow (1): Let\ L\ and\ R\ be\ a\ left\ k\text{-ideal}\ and\ a\ right\ k\text{-ideal}\ of\ M\ respectively}.\ As\ L\ and\ R\ are\ also\ quasi\ k\text{-ideal}\ of\ M,\ we\ have\ L\cap R=R\cap R\cap L\subseteq \overline{R\Gamma R\Gamma L}\subseteq \overline{R\Gamma L}\ and\ L\cap R=L\cap R\cap L\subseteq \overline{L\Gamma R\Gamma L}\subseteq \overline{L\Gamma R}.$ Hence M is both kregular and intra k-regular, by Theorem 3:5.

REFERENCES

- [1] M. R. Adhikari, M. K. Sen and H. J. Weinert, On k-regular semirings, Bull. Calcutta Math. Soc., 88 (1996) 141-144.
- [2] S. J. Alandkar ,Quasi k-ideals in k-regular Γ-semirings, Golden Research Thought, Vol. 6, Issue 3, Sep 2016.
- [3] A. K. Bhuniya and K. Jana, Bi-ideals in k-regular and intra k-regular semirings, Discuss. Math. Gen. Algebra Appl., 31 (2011) 5 23.
- [4] S. Bourne, The Jacobson radical of a semiring, Proc. Natl. Acad. Sci. USA, 37 (1951) 163 170.
- [5] C. Donges, On quasi ideals of semirings, Int. J. Math. Math. Sci., 17 (1994) 47 58.
- [6] M. Henricksen, Ideals in semirings with commutative addition, Notices Amer. Math. Soc., 5 (1958) 321.

- [7]K. M. Kapp, On bi-ideals and quasi-ideals in semigroups, Publ. Math. Debrecen, 1 (1969) 179 185.
- [8] K. M. Kapp, Green's relations and quasi ideals, Czechoslovak Math. J., 19(94) (1969) 80 85.
- [9] Y. Kemprasit, Quasi-ideals and bi-ideals in semigroups and rings, Proceedings of the International Conference on Algebra and its Applications, 2002, 30 46.
- [10]S. Lajos, Generalized ideals in semigroups, Acta. Sci. Math. (Szeged), 22 (1961) 217 222.
- [11]S. Lajos, On quasi-ideals of regular rings, Proc. Japan Acad. Ser. A Math. Sci., 38 (1962) 210 211.
- [12] J. V. Neumann, On regular rings, Proc. Natl. Acad. Sci. USA, 22 (1936) 707 713.
- [13] M. K. Rao, Γ- semiring I, Southeast Asian Bulletin of Maths., 19(1995) 49-54.
- [14] M. K. Sen and A. K. Bhuniya, Completely k-regular semirings, Bull. Calcutta Math. Soc., 97 (2005) 455 466.
- [15] M. K. Sen and A. K. Bhuniya, On Additive Idempotent k-Cli ord Semirings, Southeast Asian Bull. Math., 32 (2008) 1149 1159.
- [16] M. K. Sen and A. K. Bhuniya, On semirings whose additive reduct is a semilattice, Semi-group Forum, 82 (2011) 131-140.
- [17] O. Steinfeld, Über die Quasiideale von Halbgruppen, Publ. Math. Debrecen, 4 (1956) 262 275.
- [18] O. Steinfeld, Über die Quasiideale von Ringen, Acta Sci. Math. (Szeged), 17 (1956) 170 180.
- [19] O. Steinfeld, Über die Quasiideale von Haibgruppen mit eigentlichem Suschkewitsch-Kern, Acta Sci. Math. (Szeged), 18 (1957) 235 242.
- [20]O. Steinfeld, Quasi-ideals in rings and regular semigroups, Akademiai Kiado, Budapest, 1978.

Alandkar S. J. Head, Department of Mathematics, Walchand College of Arts & Science, Solapur.