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Abstract: In the literature (1-α)-level sequential fixed width confidence intervals for the 

parameter of U(0,  distribution have been obtained. Here the lower limit of the support is 

known. In this article we propose some sequential procedures to obtain (1-α)-level fixed area 

confidence regions for the parameters of U(θ1, θ2) distribution and their performances are 

evaluated based on extensive simulation study. 
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1. INTRODUCTION 

Let X1, X2 …Xn be independent identically distributed (IID) random variables with 
common probability density function (pdf) 

  f(x, θ1, θ2) = 1/(θ2 - θ1), if  θ1 ≤ x ≤ θ2, θ1 < θ2 

         = 0 otherwise.                          (1.1) 

The maximum likelihood estimator (MLE) of (θ1, θ2) is (X(1 n), X(n n)). Let R = X(n n) - X(1 n) be 
the sample range. Based on pivotal R/(θ2 – θ1), [1] has shown that {R, R/c} is the shortest 
confidence interval of level (1- α) for (θ2 – θ1), where c  ( < 1) is the solution of equation  

    cn-1(c(n-1) - n) + α = 0, 0 < α <1.                (1.2) 
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[2] has proposed C(

X ) = {


θ : R ≤ θ2- θ1 ≤  R/c, θ1 ≤  X(1n)  <  X(n n)  ≤  θ2} as a (1- α) level 

confidence set for 

θ = (θ1, θ2) ), where c is given by (1.2). The area of C(


X ) is R

2
 (1-c)

2
/2c

2
,  

which is random. Further it is shown that C(

X ) is unbiased but not UMA for 


θ  and C(


X ) has 

largest confidence level in the class of confidence sets of  the same Lebesgue measure. 

Equivalently C(

X ) has least Lebesgue measure amongst all those having the same confidence 

level. Based on such a confidence set we propose sequential procedures to obtain (1-α)-level fixed 

area confidence sets for the parameters of U(θ1, θ2)  distribution and evaluate their performances 

based on extensive simulation study. 

Uniform distribution plays an important role as a statistical model for physical, biological 

and social phenomena. For example continuous uniform distribution is an appropriate model for i) 

inter occurrence time of certain atomic processes, ii)  time to wait for the service from a very busy 

sever, iii) errors arising after rounding floating point numbers up to the nearest integer and iv) 

time to convert  analog (like an image or sound signal) to digital form. More over uniform 

distribution is often used as a non-informative prior in Bayesian inference. 

In the following section we obtain some result related to fixed sample size procedure. 

2. Preliminaries 

Let X1, X2, … Xn, be n IID U(θ1, θ2) variables. For d > 0, consider the confidence region  

CRn(d) = {
~
θ  = ( θ1 , θ2): (X(1 n) -  θ1) + (θ2 - X(n n)) < d, θ1 ≤ X(1n) < X(n n) ≤ θ2}.     (2.1) 

Note that CRn(d) is a triangular region of area d2/2 and is described below.  

 
Figure 2.1: Confidence region CRn(d) 

http://www.vosesoftware.com/ModelRiskHelp/Analysing_and_using_data/Bayesian/Uninformed_priors.htm
http://www.vosesoftware.com/ModelRiskHelp/Analysing_and_using_data/Bayesian/Bayesian_inference.htm
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For if the confidence region of the form (2.1) and has at most area A0, it is necessary and 
sufficient for d to be less than or equal to d0 = (2A0)1/2. In order to reduce the sample size and/or 
to increase the coverage probability, in the following we consider d = (2A0)1/2. 

Let Rn = X(n n) - X(1 n) . The joint distribution of (X(1 n), X(n n) ) and of  (X(1 n), Rn ) are 
respectively given by  

f(x, y) = n(n-1) (y – x)n – 2 / (θ2 - θ1)n [θ1 ≤ x < y ≤ θ2]  

          = 0 otherwise 

and  g(x, r) = n(n-1) rn – 2 / (θ2 - θ1)n
,  θ1 ≤ x  ≤ θ2, 0 < r < θ2 - θ1, r + x < θ2   

           = 0 otherwise. 

The random variables X(1 n) and Rn are not independent and the marginal density of Rn is 
given by 

  g(r) = n(n-1) rn – 2 (θ2 - θ1 – r) / (θ2 - θ1)n [r < θ2 - θ1]. 

The distribution of Rn depends on 
~
θ  only through θ2 - θ1 = δ (say). Let Vn = Rn/δ. The pdf 

of Vn is,    

g(v) = n(n-1) vn – 2 (1-v), 0 < v <1. 

That is Vn has beta distribution of first kind with parameters n - 1 and 2. Consider    

P(
~
θ   CRn(d)) = P(1 - Vn < d/δ)   

     = P(Vn > 1- d/δ)  = 







 1d/δif1)1)d/δ((n) d/δ(11

1d/δif1
1n

.  

Let d/δ < 1, then N(d, δ), the least sample size so that P(
~
θ   CRn(d)) ≥ 1 – α is given by 

     N(d, δ) = inf {n (≥ 2): (1- d/δ)n-1((n-1)d/δ +1) < α}                 

                                                = inf {n (≥ 2):  K(n, d, δ) < α },            (2.2) 

where K(n, d, δ) = (1- d/δ)n-1((n-1)d/δ +1). In the following we prove some properties of K(n, d, δ) 
and used to obtain sequential procedures 

Lemma 2.1: Let n ≥ 2 and d > 0 be a fixed number, for simplicity K(n, d, δ) be denoted by  K(n, δ). 
Then  

(i) for each δ fixed, K(n, δ) is decreasing in n and K(n, δ) tends to 0 as n tends to ∞. 
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(ii) for each n fixed, K(n, δ) is increasing in δ and increases to 1. 
(iii) for each n fixed, K(n, δ) is decreasing in d. 

 
Proof: (i) Let a = d/δ, we note that 0 < a < 1. Consider log K(n, δ) = (n-1) log(1- a) + log((n-1)a 

+1). By considering n as a real number, we have ∂ log K(n, δ)/∂n = log(1-a ) + a/((n-1)a +1). To 

prove result it is enough to show that log(1-a ) < - a/((n-1)a +1), equivalently 1- a < e 
-a/ ( (n -1) a + 1)

. 

For 0 <a < 1, we have 1- a < e
a
 and a > a/{(n-1)a +1} for n ≥ 2. Thus 1- a < e 

-a/ ((n -1) a + 1)+ 1 
< e

 a/ ((n 

-1) a + 1)+ 1  
< e

a
, which is true. Further by L’Hospital rule, 

n

lim
 K(n, δ)  = 

n

lim
a /((1-a) (1-a)

-n
 

log(1-a)) = 
n

lim
a(1 – a)

n
/((1-a) log(1-a)) = 0. Hence part (i).  The graphs of the function K(n, 

δ) for n ≥ 2, d= 1 and δ > d are given  below. 

  
   Figure 2.2: Graph of k(n, δ) against n 

 (ii) Since δ – d > 0,  ∂ log K(n, δ)  /∂δ = (n-1)d/(δ2 – dδ) - (n-1)d/(δ2 + (n -1)dδ) = n(n-1)d/(δ(δ-1)(δ 
– d + nd)) > 0, for each n fixed. Hence K(n, δ) is increasing in δ and it increases to 1. 

(iii) Similar to case (ii).            □ 
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The graphs of the function K(n, δ) as a function of δ, when d = 1 and different n are given 
below.  

     
                          Figure 2.3: Graph of k(n, δ) against δ 

 We note that the least sample size n for which P(
~
θ   CRn(d)) ≥ 1 – α  (equivalently K(n, 

δ) < α) depend on δ, which is unknown. In the following we propose some sequential stopping 
rules N of (1- α )- level fixed area and propose the confidence region C(X) for 

~
θ  = (θ1, θ2) given 

by, 

CN(X) = {
~
θ  : RN < θ2 - θ1 ≤ RN + d, θ1 ≤ X(1 N) < X(N N) ≤ θ2}.        

3. Some sequential procedures to find confidence region of fixed area for 

θ = (θ1, θ2)  

In the following, by using Lemma 2.1, we propose stopping rules; based on the lower 
bound of δ, an unbiased estimate of δ, the shortest length criteria and a two-stage procedure. 
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Further by extensive simulation we examine for the attainability of required coverage probability 
(1- α). 

I. Based on lower bound of δ:  

In the following we propose a sequential stopping rule N1 that depends on Rn, an almost 
sure sharp lower bound for δ. The rule N1 is essentially is obtained by replacing K(n, d, δ)  by K(n, 
d, Rn). Define  

    N1 = inf {n (≥ 2): K(n, d, Rn) < α}.           

        = inf {n (≥ 2):(1- d/Rn))n-1(1+(n-1)dRn) < α}= N(d, R).         (3.1) 

For d fixed, let n(δ, α) be the least positive number satisfying (2.2) ( that is exact minimum 
sample size). Since K(n, δ) = (1- d/δ)n-1((n-1)d/δ +1) is increasing in δ and Rn < δ almost surely 
(a.s.), we have N1 ≤ n(δ, α) a.s.. Thus N1 is bounded and hence it is a proper stopping random 
variable.           

It is difficult to obtain an expression for P(
~
θ   CN1(X)). However as N1 ≤ n(δ, α) a.s.,  the 

coverage probability P(
~
θ   CN1(X)) will not be larger than  (1- α). In the following we carry out 

the simulation study with 30,000 iterations with α = d =1, and for various values of 

he simulated average sample number (ASN) and the coverage probability (COV) of the rule 
N1 are obtained in Table 3.1. It is observed that coverage probability (COV) of the rule N1 is not 
always exceeding (1- α). In the following we propose a modified rule  

M1 = N(fd, R),   0< f < 1, 

where f  is a suitable fraction. By the definition of N1 and Lemma 2.1, we have N(d1, . ) > N(d2, .) 
for d1 < d2 ≤ 1. Thus we have M1 ≥ N1. RR However we M1 ≤ n(δ/f, α) a.s and hence M1 is also a 
proper stopping random variable. RR  Let f = 1- kα. For M1 to be as least as possible, f has to be 
as large as possible. Hence we choose k as a least positive number that might depend on α but 
not on 

~
θ  and confidence region based on rule M1 attains desired coverage probability. With α = 

0.05, it is observed that, for k < 10, rule M1 does not attain 95% coverage and for k ≥ 10, rule M1 
attain 95% coverage. For k =10, the simulated values of ASN (M-ASN) and coverage probability 

(M-COV) of the rule M1 for different values of  are tabulated in Table 3.1. Though M-ASN is 
larger than ASN, coverage probability is attained for the rule M1. With 30,000 iterations, Table 
3.1 gives minimum sample size, simulated values of sample size’s and the coverage probabilities 
of the rules N1 and M1 for α = 0.05.   

II. Based on unbiased estimate of δ: We know that Un = (n+1)Rn/(n-1) is an unbiased estimate of 
δ. Let N2 = N(d, Un) and M2 = N(fd, Un). Note that M2 ≥ N2 Since Un < Rn < δ almost surely (a.s.), 
we have N2 ≤ n(δ, α and M2 ≤ n(δ/f, α).) a.s. we have  N2 , and M2 are proper stopping random 
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variables. Following similar study as in case I, an appropriate value of k is 11 for  = 0.05. With f 

= 1 - 11, we carry out the simulation study and the results are tabulated in Table 3.1. 

 III. Based on shortest length criteria: Based on [1] shortest confidence interval, we propose a 
purely sequential stopping rule N3(d) such that 

   N3 = inf{n ≥2: Rn(1-cn) < d}              (3.2)   

where cn is given by (1.2). So we take M3 = inf{n ≥2: Rn(1-cn) < fd}. Since cn < 1, Rn < d < δ almost 
surely (a.s.) and we have N3 ≤ M3 ≤ n(δ/f, α)  a.s. Thus N3 and M3  are proper stopping random 

variable.  An appropriate value of k is 7.5 for  = 0.05. With f = 1 - 7.5 simulated results are 
tabulated in Table 3.1. 

IV. Two stage procedure: [2] has proposed a two stage procedure (T) as below. 

(i) Take a random sample of size m and obtain Rm and cm(α1) given by (1.2) which in turn 
implies P(Rm < δ < Rm/cm) ≥ 1-  α1. If (1/cm(α1) – 1) < d , stop and take (1- α1)-level 
confidence region for 

~
θ  = (θ1, θ2) as (Rm,  Rm + d ) otherwise go to second stage by 

taking Rm/cm(α1) as an estimate for δ (in fact upper bound). 

(ii)  Take an independent  random sample N(Rm, cm(α1), d, α2) such that 

                    N4(d) = inf{n ≥2: (1- cm(α1)d/Rm)n-1((n-1)cm(α1)d/Rm +1) < α2} 

Then take (1- α)-level confidence region for 
~
θ  = (θ1, θ2) as (RN, RN + d). Note that (1- α1)(1- α2) = 

(1- α) and the two stage procedure T can be shown to be closed (refer [2]). With 30,000 

iterations, the simulated sample size (T-ASN) and coverage probability (T-COV) for d 

m  α1= 0.02, α = 0.05 and different values of  are tabulated below. 

Table 3.1: Exact minimum sample size, Simulated ASN, Coverage Probabilities of 

the rules Ni’s and Mi’s and the two stage procedure T 

Rules θ2 1.1 5.1 10.1 15.1 19.1 100 400 

 n(δ, α) 3 23 47 70 89 473 1896 

N1 ASN 22.26 18.73 43.50 67.62 86.53 470.62 1893.09 

 COV. 1 0.7916 0.9034 0.9261 0.9273 0.9438 0.9482 

M1 M-ASN 22.31 44.73 92.83 139.81 177.78 945.45 3791.81 

 M-COV 1 0.9961 0.9989 0.9988 0.9989 0.9991 0.9992 

N2 ASN 5.89 22.03 46.17 70.03 88.99 472.91 1896.11 
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 COV. 1 0.8844 0.9283 0.9373 0.9498 0.9485 0.9489 

M2 M-ASN 9.27 52.13 104.91 157.72 199.79 1052.73 4215.47 

 M-COV. 1 0.9956 0.9978 0.9991 0.9986 0.9995 0.9995 

N3 ASN 6.35 25.20 49.03 72.71 91.69 475.58 1898.96 

 COV. 0.9371 0.9312 0.9421 0.9471 0.9475 0.9485 0.9491 

M3 

 

M-ASN 9.24 39.76 77.76 115.71 146.13 760.15 3019.92 

M-COV. 0.9524 0.9858 0.9921 0.9935 0.9939 0.9951 0.9971 

T 
T-ASN 17.56 71.07 137.44 204.70 258.09 1336.04 5330.09 

T-COV 0.9997 0.9970 0.9967 0.9973 0.9978 0.9973 0.9973 

 

Remark 3.1: The least values of k for different α and the modified rules Mi’s are given in table 
3.2. 

Table 3.2: Minimum values of k. 

Rules α = 0.01 α = 0.05 α = 0.1 

M1 47 10 4.5 

M2 60 11 5 

M3 40 7.5 4 

 

Remark 3.2: From tables 3.1-3.4, it is clear that the procedure M3 based on shortest length 
criterion gives desired coverage with smaller ASN as compared to other modified and two stage 
procedures. This is true for all α. Hence we recommend sequential procedure M3. Further the 
simulation study overall reveals that the coverage probability increases with increase in θ2 – θ1.  
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