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ABSTRACT 
 It has been observed that most failures in to kamak start-up 
occur during the plasma burn through phase. However, our 
understanding of plasma burn-through is limited, and to kamak start-up 
has relied on trial and error methods without investigation on the 
physics of plasma burn-through. The plasma burn-through modelling is 
a very useful tool to understand the key physics aspects in the burn-
through phase, and it will make a contribution to ensuring a reliable to 
kamak start-up and can be used in reducing flux consumption of the 
ohmic transformer at the start of the plasma discharge in to kamaks. 
Plasma burn-through modelling can also be a basis for the research on 
non-inductive start-up (or solenoid-free start-up), which are of crucial 
importance for a fusion power plant. 
 
KEYWORDS :  ITER, Electric field & Plasma burn. 
 
INTRODUCTION 

In ITER, the allowable toroidal electric field for start-up is limited up to 0.35[V/m] due to the 
engineering issues explained in section 1.2. Since tokamak start-up using such a low E field is only possible 
for a narrow range of prefill gas pressure, low magnetic error fields, and low impurity content, RF-assisted 
start-up [1-5] has been proposed in ITER. In order to estimate the required RF power, plasma burn-through in 
ITER was modelled [6]. However, the previous models were overly simplified, and furthermore, they have 
never been validated against experimental data. In this section, the basic structure of plasma burn-through 
modelling and the enhancement in the DYON code are introduced.  
  
Basic structure of plasma burn-through simulator: 
 In this paper, all physical quantities are expressed in SI units except for the prefill gas pressure. A 
prefill gas pressure is indicated in [Torr]. Temperatures in the equations are written in [Joules]. Whenever the 
temperature given is in [eV], this is explicitly stated. 
 
Circuit equation for plasma current: 
 Assuming a plasma as a circular current loop, the plasma current Ip can be calculated using the circuit 
equation. 

   
dt

dI
LRIU p

ppp 1       (1) 

 
 where Ut is a toroidal loop voltage, induced by the external coil voltage. In this section, the self- 
inductance Lp and electric resistance Rp of a plasma are derived, respectively. 
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Plasma inductance: 
 Inductance can be calculated from the relation of electric current and the stored magnetic energy in 
electromagnetics, 

   dVBLI
V

0

2
2

22
1


      (2) 

 
 Derivation of inductance requires surprisingly lengthy calculations depending on the coil geometry, 
but it is well known that the electric inductance of a circular current loop is 
 

   L = 0R 





  YRIn 28


     (3) 

 
 where a is a minor radius, R is a major radius, and Y is a function of the current profile in the coil 
(plasma cross-section)1 . Y represents how much magnetic energy (= B2/2µ) is stored  within the coil. When 
the electric current is uniformly distributed over the surface of the coil (no magnetic energy within the coil), Y 
= 0. 
 Equation (3) can be applied to calculate the inductance Lp of the plasma current. Lp can be separated 
into two parts, 
 
    Lp=Le+Li.      (4) 
 
 Le is external inductance which is related to the magnetic energy stored in the external volume 
(outside the coil), 
 

   Le= 0 R 





  28


RIn .     (5) 

 
 The inductance Li represents the stored magnetic energy within the plasma volume, and is defined as 
 
    Li = 0RY      (6) 
 
 Y (and in turn Li) for a plasma current can be derived using Equation (3.2), 
 

    ,
2

,,
2
1

0

2
2 dxdydzzyxBIL

meplasmavolupi 
     (7) 

 
 where Bθ is the poloidal magnetic field, produced by a plasma current. In order to integrate Bθ over the 
plasma volume, which is a torus, we should  hange the rectangular coordinate to be suitable for the integration 
of the torus volume, 
 
    (x, y, z) → (Rϕ, r, θ) 
    dx dy dz → Rdϕ dr rdθ    (8) 
 
 where ϕ and θ are the toroidal and poloidal angle, and R and r are the length in directions of major 
radius and minor radius, respectively. Then, assuming toroidal symetry, dBθ(Rϕ, r, θ)/dϕ = 0, we can have 
 



 
 
STUDIES ON PLASMA BURN-THROUGH SIMULATION: AN OVERVIEW                                 Volume – 7 | Issue - 10 | July - 2018   

_____________________________________________________________________           

________________________________________________________________________________________ 
Available online at www.lbp.world 

3 
 

 

    





drdRrdrRBIL
a

pi
0

22

0

2

00

2

2
,,

2
1

  

 

   
  

 


RrdrdrBa

0

22

00 2
,2      (9) 

 
 We assume a plasma current in a circular cross- section and assume poloidal symetry i.e. 
dB(r,)/d=0. Then Equation (9) is 
 

    RrdrrBIL
a

pi
0

2
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22

2
4

2
1


        (10) 

 
 Using Ampere's law, i.e.  B = 0Jp, we can substitute Ip in Equation (10) with  
 

    
0

)(2


  aaBI p       (11) 

 
 then, Li and Y can be obtained as  
 

   Li= 0R
)(

)(
22

0
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aBa

rdrrB
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
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
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 In plasma physics, it is conventional to express the plasma inductance, Lp using a diemnsionless 
normalized plasma industance ,2

il  
 

 Lp = 0R 





 
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 In the case of a flat profile of the plasma current, Bo(r) can be substituted using the constant plasma 
current density Jp, 
 

    B(r) = 
r

rJ p




2

2
0       (14) 
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 Then, li for a uniform plasma current is  
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Plasma Resitance: 
 We can derive the plasma resitance Rp assuming that coulomb collisions are dominant compared to 
electron-neutralcollisions. The derivation begins from the fluid equation of motion for electrons,  
 

     ieeee
e

ee FpBuEen
dt
udnm 



   (16) 

 
 where ieF 


 is the friction force, which results from collisional transfer of momentum between 

electron and ion, and eu  is the fluid velocity of electrons ( iu  is ion fluid velocity). Defining momentum 

transfer frequency  of an electron m
iev  , ieF 


 can be expressed as  

 
      , 

m
ieeieeie vuunmF 

     (17) 
 
 where  

m
iev  is an average value of m

iev   in the fluid. Assuming uniform electron pressure (pe= 0), 

parallel fluid velocity to the electric field and the magnetic field  0,  BuEuu eie

 , and smal electron 

inertia term 





  0

dt
udnm e

ee


, Equation (16) can be reduced to  

 
       

m
ieeieee vuunmEen    (18) 

 

 The electric resistivity is a function of the electric current and the electric field, =
J
E

. Substituting J 

and E with ene(uiue) and Equation (18), the electric resistivity e-i due to the e-i collisions can be obtained,  
 

    
e

m
iee

ie ne
Vm

J
E

2


 

     (19) 

 
 For a deuterium plasma, m

iev   is a product of ni (ion density), m
ie (cross- section for collisional 

momentum transfer), and ve (velocity of an electron).  
 
     m

iev   = e
m

iei vn  .    (20) 
 
 m

ie  can be calculated with the impact parameter b0 which is defined as a distance between an 
electron and an ion when electrons have a 90 scattering coulomb collision. 
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 Then, m

ie  equals 2
0b (4 In),  
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 where (4 In ) is a correction factor to include the cumulative effect of many small-angle deflections. 
The coulumb logarithm In  is insensitive to plasma parameters (In  10), and is defined by In (D/bo).4 

 Substituting m
ie  in Equation (20) with Equation (22), we can have  
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 Since m

iev    is a function of  
 m

iee vv ,3  must be calculated using a distribution function. The detailed 

derivation of  
m

iev  using Equation (23) for a Maxwellian distribution is well described in [4]. Defining 

,/ ee
th
e mTv   the average value of the momentum collision frequency  

m
iev  is 
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 The plasma resistivity ηe−i can be calculated by substituting the momentum transfer frequency m

iev  in 
Equation (19) with Equation (24), 
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 In order to calculate an accurate plasma resistivity, e-e collisions should also be considered. Spitzer 
and co-workers have found the correction factor for this as 0.51. Hence, accurate resistivity in a deuterium 
plasma i.e. Spitzer resistivity ηs is 
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   ≈ 5 × 10−5 × lnΛ × Te
−3/2 [eV ].    (26) 

 
 In the case of impurities in a plasma, ηs should be modified to Zfηs where Zf is an effective charge, 
defined as [1] 
 

    
 
 





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A Z
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A

A Z
z
A

f zn
zn

Z
1

2

     (27) 

 
 where subscript A represents deuterium or an impurity. z means an ionic charge state. Accordingly, 

z
An  indicates deuterium ion density 1

Dn  or impurity ion densities z
In with charge state z. 

 Plasma resistance Rp is a function of plasma resistivity ηs and the size of the current loop (cross-
section A and length l),  
 

  Rp = Zfηs 2
21

a
RZ

A sf 
  

 

  = 5 × 10−5 × lnΛ × Zf ×  eVT
a
R

e
2
3

2

2 
      (28) 

 
 where R and a are the major and minor radius of the plasma. 
 

 
Figure- 1: Energy flow in plasma 

 
Electron energy balance 
 It should be noted that plasma resistance Rp is a function of electron temperature Te and effective 
charge Zf . In order to calculate Ip with (1), Te and Zf should be obtained by solving the energy and particle 
balance equations. 
 Figure 1 shows how energy flows in a plasma through various heating and loss channels. The net 

heating power i.e. Pheating − Ploss remains as the internal energy of the plasma, eeTn
2
3

 and iiTn
2
3

. Assuming a 

uniform plasma density and temperature, we can calculate the electron energy balance equation, 
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 where Poh and Paux are ohmic heating and auxiliary heating such as ECH or ICH. Electron power 
losses in Equation (29) consist of collisional ionization power loss Piz, radiation power loss Prad, equilibration 
power loss Pequi, and convective transport power loss Pe

conv.  
 
Electron heating power 
 Ohmic heating Poh is the main electron heating source, and all ohmic heating power is assumed to be 
absorbed by electrons without ion heating. Ohmic heating power per unit volume is 

    
p

pp
oh V

RI
P

2

       (30) 

 
 where Vp is the plasma volume [6]. 
 Since most simulations in this thesis are for ohmic start-up cases (no RF assist), we set Paux = 0. In 
order to provide more input power to ensure robust tokamak start-up, auxiliary heating such as Electron 
cyclotron Heating (ECH) or Ion Cyclotron Heating (ICH) is planned for ITER. The auxiliary heating power 
Paux to the plasma is a complicated function of various plasma parameters. For RF-assisted start-up for ITER, 
we will assume Paux as a constant (in time and over the plasma volume) absorbed heating power. 
 
Electron power losses 
 The collisional ionization process is a power loss mechanism from an electron point of view since a 
free electron loses their kinetic energy as much as the binding energy of an electron in an atom [6]. Therefore, 
collisional ionization power loss Piz is 
 

   
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   z
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01010
,   (31) 

 
where   1zz

Aw  is the ionization energy required to ionize an atom or a non-fully ionized ion from z+ to an 
(z + 1)+. Here V A

n  represents a neutral volume of species A within a plasma volume. Since the ionization 
reaction of neutrals can occur only in the neutral volume within a plasma volume, the different volume 
occupied by neutrals or ions must be taken into account. The first term on the right-hand-side in Equation (31) 
is the electron power loss required to ionize neutrals. The second term is for further ionization of non-fully 
ionized ions to higher charge states.  
 
                 < σv > 10

,izA  and < σv >  )1(
,

zz
izA  are ionization rate coefficients. In this thesis, the reaction rate 

coefficients and power coefficients are expressed as <σv>. Their superscript indicates the change of the ion 
charge in the atomic reaction, the subscripts represent the species of the reaction particle and the kind of the 
reaction. For example, < σv >  )1(

,
zz

recA  indicates a recombination rate coefficient of species A of which the 
ionic charge transits to (z−1) + from z+ through a recombination reaction. In the case of charge exchange 
reaction, the subscript is cx. < σv > z

lineA,  is a power coefficient for line radiation and < σv >  )1(
,

zZ
RBA  is a 

power coefficient for Recombination and Bremsstrahlung radiation. The rate coefficients and power 
coefficients used in the burn-through simulation are obtained from Atomic Data and Analysis Structure 
(ADAS) package.  
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DISCUSSION & CONCLUSION  
The ADAS atomic rate coefficients are based on the generalized collisional-radiative theory, and the 

data can cover various range of plasmas e.g. space plasma, industerial plasma, and the thermonuclear fusion 
plasma in current devices. It is assumed in the ADAS data that the free electrons have a Maxwellian velocity 
distribution and the dominant populations of impurities are in the quasi-equilibirium i.e. the ground and 
metastable states.If there is a collisional excitation of an atom or an ion, a free electron also loses its kinetic 
energy. In the case of optically thin plasma (no reabsorption of photons in the plasma), which is assumed in 
this thesis, the amount of the electron power loss for collisional excitations is equal to the subsequent line 
radiation power. The electron power loss resulting from the electron deceleration due to the background ions 
is also equal to the Bremsstrahlung radiation power loss. However, in the case of recombination, the radiation 
power loss is greater than the electron power loss for the recombination reactions since the potential energy in 
an atom or an ion is included in the total recombination radiation power. Therefore, this amount must be 
subtracted from the total recombination radiation power in order to calculate the electron power loss.  
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