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ABSTRACT :  

An astonishing number of test statistics have been 
found to test the presence of an outsider in multiple linear 
regression models. Accurate critical values of these test 
statistics are not available and are usually obtained by first-
order Bonferoni upper bound or large-scale simulation,used to 
demonstrate the application process of real data for multiple 
linear regressions. 
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INTRODUCTION : 
 The exterior is an inconsistent observation. This is an observation that does not fit into the rest of 
the observation pattern. This is clearly different from the other members not only from the set from which it 
arises, but also from its fitted value. Such observations usually have a large residue. Outliers meet data 
analysts during data analysis and in data mining. Domankshi P.D. It was pointed out that there are various 
reasons for the exit such as human error, incorrect operation of the computer system, sampling error or 
standardization failure. Outliers usually have a large influence on the estimation of the resulting parameters 
and their presence adversely affects the results of the statistical findings related to the models. They can 
reduce the power of statistical tests during analysis. Rajaratinmana and Vinoth advised that if the analyst’s 
outline exists, they need to be identified so that appropriate measures can be taken. 
 Outsiders need to be identified and corrected or eliminated. The process of identifying and 
correcting outsiders is not a straightforward one; instead it requires strict adherence to clear competence, 
competence, caution, and a high degree of scientific objectivity (objectivity). If identified external measures 
cannot be taken, they must be removed as they contaminate information in the rest of the data set. Testing 
for external observations in response variables is usually based on the use of test statistics that rely on 
standardized residues. In the minimally square analysis of the linear regression model, various test statistics 
have been developed for external testing. However, accurate critical values of some of these test statistics 
are not available and are not easy to obtain. The approximate ones available are based on first-order 
Bonferoni upper bound or large-scale simulations. A high limit for critical values of test data to detect the 
presence of a single extraterrestrial in linear regression has been developed by Prescott P and Lund RE. 
While drawing these upper boundaries, we show in this paper that these upper boundaries drawn by 
Prescott P and Lund REare algebraically similar. 
 The Multiplier Linear Regression is as follows… 
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푌 = 푋훽 + 휀 
 
 
 
Equation – 1  
 Where Y is the n X 1 observation vector, X is an n X 1 matrix of constants, 훽 is p X 1 vector of 
unknown parameter to be estimated and 휀 is an n X 1 vector of normally distributed errors. Assuming that 
E(휀) = 0 and Var (휀) = 휎 1 the least square estimator is 훽 in equation – 1 given as, 
 

훽 = (푋 푋) 푋 , 푌 
 
Equation – 2  
And the vector of residual is  
 

푒 = 푌 − 푋훽 = (퐼 − 푋(푋 푋) 푋 )휀 
 
Equation – 3  
The variance of co-variance of matrix e is as follows, 
 

푣푎푟(푒) = 푌 − 푋훽 = (퐼 − 푋(푋 푋) 푋 )휀 
Equation – 4  
 If 휎 estimated using 휎 ∧ = 푒 푒(푛 − 푝), the approximate variation-covariance matrix of eis formed 
 

푣푎푟(푒) = 푌 − 푋훽 = (퐼 − 푋(푋 푋) 푋 )휎 ∧  
 
 Residues are important diagnostic tools in regression analysis because no regression analysis is 
complete without their thorough investigation. They are versatile because most regression diagnoses are 
written from their point of view. They are used to check the adequacy of the model and the validity of the 
model assumptions. Therefore a thorough examination of the residue provides valuable information 
regarding the suitability of the underlying assumptions of the statistical models and helps to determine the 
appropriate model. A variety of graphic plots (statements) of remains are used for diagnostic purposes. 
Common residues are not suitable for diagnostic purposes and a standardized version of them is usually 
preferred. This is because the differences in the residues are not homogeneous and this causes them to 
deviate. The standard residue represents the form is as follows… 
 

푅 =
푦 − 푦

휎 ∧ 1 − ℎ
 

Equation – 6  
 Where푦  is the approximate value of 푦  and ℎ is the ith component of matrix 푋(푋 푋) 푋  of, called 
the hat matrix. The ithconverted residual푅  is usually called internal pupil residue. They are tractable and 
more versatile. They are used as a replacement for common residues in regression diagnostics. Numerous 
graphical and numerical techniques for examining model assumptions using standardized residues can be 
found in the regression literature. They are also basic building blocks for known test data studied in the 
literature for external detection in linear models. 
 
The Statistic Tests: 

푅 = 푚푎푥 
푦 − 푦

휎 ∧ 1 − ℎ
= max|푅 | 
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Equation – 7  
Considered the statistics test by Prescott P. is as follows… 
 

푅∗ = 푚푎푥
푒
휎

 

 
Equation – 8 
 Where 휎  is the approximate average difference of normal residues. Studies by Andrews and 
Pregibon have shown that the difference in residues is (푛 − 푝) 휎 푛⁄ , so that the approximate difference in 
common residues is 휎 = (푛 − 푝) 휎 ∧ 푛⁄ . 
 
Therefore: 

푅∗ =
푛 ⁄ 푚푎푥|푒 |

∑ 푒
⁄  

 
Equation – 9  
 According to Prescott, the relative percentage of 푅∗ is limited to 푅∗  is bounded above by, 
 

푈 =
(푛 − 푝)퐹

푛 − 푝 − 1 + 퐹
 

 
Equation – 10 
 Where F is the 100(1 − 훼 푛⁄ ) percentage point of the F distribution with degrees of freedom 1 and 
n-p-1, n is the number of observations, and p is the approximate number parameter. Due to the 
unavailability of the required values of the f-distribution, the Prescott’s result was not as wide and wide as a 
result of the equation. 
 

휉 =
푅

푛 − 푝
 

 
Equation – 11 
 Ellenberg showed that the combined distribution of 휉 푠has a multivariate inverse-student function, 
and the probability density function for any 휉  is a student function with an irreversible inverse-potential 
density function. 
 

푓(휉 ) = 퐶 1 − 휉
( )⁄

, 휉 ≤ 1 
 
Equation – 12 
Where, 

퐶
Γ((푛 − 푝) 2⁄ )

Γ(1 2⁄ )Γ((푛 − 푝) 2⁄ ) 
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Equation – 13 
 By the reference of Lund’s following suggestion of Prescott made us the result of following equation 
– 14. With the use of Prescott’s the first-order Boneferroni inequality is obtained the upper bounds R0 of the 
critical value of Rn. 

2푛푓(휉 )푑휉 = 훼 

 
Equation – 14 
Where,  
 휉 = 푅 푛 − 푝⁄ and then obtained 푅  using the relationship between 푅  and 휉  given by the 
equation 
 

푅 = 휉 푛 − 푝 
 
Equation – 15 
Demonstration of similarity of upper boundaries: 
 In this section, we show that the upper boundaries R ∗ 0 and R0 are algebraically identical. From the 
equation - 10, we do 
 

푈 =
(푛 − 푝)퐹

푛 − 푝 − 1 + 퐹
 

 
Equation - 16 

푃 (푈 < 푢) = 푃푟
(푛 − 푝)퐹

푛 − 푝 − 1 + 퐹
< 푢 = 푃푟 푓 <

푢 (푛 − 푝 − 1)
푛 − 푝 − 푢

 

 
Equation - 17 
So that, 

푓 (푢) = 푓
푢 (푛 − 푝 − 1)

푛 − 푝 − 푢
, 1, 푛 − 푝 − 1

푛(푛 − 푝 − 1)(푛 − 푝)푢
(푝 + 푢 − 푛)  

 
Equation – 18 

 With the distribution of the domain given by 0, (푛 − 푝)  with explicitly we have, 
 

푓 (푢) = 퐻 1 −
푢

푛 − 푝

( )⁄

  0 < 푢 < (푛 − 푝) 

 
Equation – 19 
Where, 

퐻 =
2Γ((푛 − 푝) 2⁄ )

Γ(1 2⁄ ) 푛 − 푝Γ((푛 − 푝 − 1) 2⁄ )
 

 
Equation – 20 
 Then, using the first Bonferoni inequality, one can get the upper limit 푅∗  by solving 
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푛푓 (푢)푑푢 = 훼
( )

∗
 

 
Equation – 21 
Now from the equation 11 we have, 

푃푟(푅 < 푟) = 푃푟 휉 푛 − 푝 < 푟 = 푃푟 휉 <
푟

(푛 − 푝)
 

 
Equation – 22 
So that, 

푓 (푟) = 푓
푟

(푛 − 푝)
1

푛 − 푝
 

 
Equation - 23 
 With the distribution domain or with a given range by − 푛 − 푝, 푛 − 푝,  explicitly we have, 
 

푓 (푟) = 퐷 1 −
푟

푛 − 푝

( )⁄

− 푛 − 푝, < 푟 < 푛 − 푝 

 
Equation – 24  
Where,  

퐷
Γ((푛 − 푝) 2⁄ )

Γ(1 2⁄ ) 푛 − 푝Γ((푛 − 푝 − 1) 2⁄ )
 

 
Equation – 25 
Let, 

푌 = |푅 | 
 
Equation – 26 

푃푟(푌 < 푦) = 푃푟(|푅 | < 푦) = 푃푟(−푦 < 푅 < 푦) 
 
 Due to the symmetry of the distribution of 푅  in Equation - 24, we get the distribution of 푌 = |푅 | as 
follows: 
 

푃푟(푌 < 푦) = 2 Pr(푅 < 푦) 
 
Equation – 27 
Explicitly we have the following, 

푓푌 = 퐻 1 −
푦

푛 − 푝

( )⁄

  0 < 푦 < 푛 − 푝 

 
Equation – 28  
 Then, using the first Bonferoni inequality, a person can get R0 by solving 
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푛푓 (푦)푑푦 = 훼
( )

∗
 

 
 
 
Equation – 29 
With the equality of equation – 21 and equation – 29, we have 
 

푛푓 (푢)푑푢 = 훼
( )

∗
 ⇒ 푛푓 (푦)푑푦 = 훼

( )

∗
 

 
Equation – 30 
 This means that R0= 푅∗ , which means that Rn and 푅∗ have constructs bound by the same 
distribution. 
 
CONCLUSION: 
 In this article, we have shown that the upper binding value of the test figure by Equation 7 is R0 and 
the upper bound of the test figure by Equation 8 is R ∗ 0. Although formal differences exist in the principles 
used by Prescott to draw R ∗ 0 and are employed by Lund to draw R0, we have shown here that they are 
algebraically similar. After showing this, we recommend using Equation - 29 to calculate the upper 
boundaries of Prescott or Lund. This is more tractable than Equation-10 and Equation-14. Some sort of 
transformation and limitation of the equation - 10 uses tabulated values of F-distribution, accuracy and 
precision may be lost while using them. 
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