

IMPACT FACTOR : 5.7631(UIF)

ISSN: 2249-894X

VOLUME - 7 | ISSUE - 12 | SEPTEMBER - 2018

STUDIES ON SOME NICKEL (II) COMPLEXES CONTAINING MIXED LIGANDS

Md. Sarfaraz Alam Research Scholar In The Faculty Of Science(Chemistry), L.N.M.U. Darbhanga.

ABSTRACT

This study concerns with the preparation and characterization of some new complexes of nickel (II) with mixed ligands : salicylaldehyde semicarbazone $-SCH_2$ and a few acid (salicylic acid $-SH_2$ or anthranilic acid $-AnH_2$ or phthalic acid $-PH_2$). The complexes are characterized using different physico-chemical methods. The study supports that the complexes are binuclear with distorted octahedral geometries

KEY WORD: preparation and characterization , physico-chemical methods.

INTRODUCTION

Nickel complexes occurred in several nickel containing enzymes and are proposed to be involved in catalytic reaction. Nickel complexes with some macrocyclic ligands are studied and a few of them forming polynuclear complexes. Agood deal of labor has been reported on the preparation, spectral and structural investigation of semicarbazones and their complexes, because of their capability of acting as polydentate donor with the formation of either mono- or bi- or polynuclear complexes. In addition to their interesting ligational properties, semicarbazones and their complexes have important biological activities. Awide studies are done on the substituted benzoic acids thanks to their interesting ligational properties. There has been growing interest within the formation of mixed ligand chelates involving ligands containing different functional groups and transition metals of various oxidation states which may formed chelates with ligands containing different donation sites. On the opposite hand, coordination compounds with mixed ligands are of considerable importance within the field of metalloenzymes and other biological activities, hence an outsized body of the coordination chemistry of mixed ligands complexes, we took a humble part within the chemistry of mixed ligands complexes, we took a humble part within the chemistry of mixed ligands containing are published on their coordination chemistry with transition metal ions

In the present work, nickel (II) complexes with mixed ligands {salicylaldehyde semicarbazone and substituted benzoic acids (Figure -1)} have been synthesized and characterized physicochemically

Available online at www.lbp.world

Figure 1 : Structures of the ligands

Experimental

1-Analytical and Physical Measurements :

Carbon, hydrogen and nitrogen have been estimated for some complexes using CHN microanalyser type 1106 (Carlo- Erba) at Department of Chemistry, College of Science, University of Mosul. Nickel contents have been determined by applying precipitation method after the decomposition of the complexes⁽²⁵⁾ with concentrated nitric acid⁽¹⁻¹⁴⁾

Conductivity measurements have been carried out with an electrolytic conductivity measuring set LF-42 and Multiline f / SET-2WTW Wissenschaf using 10^{-3} M dimethylformamide solution at room temperature. The infrared spectra has been recorded on a Pye-Unicam 1100 Infrared Spectrophotometer in the region 400-4000 cm-1 using KBr pellets. Electronic spectra has been recorded on Shimadzu UVVissible Recording Spectrophotometer UV 160 for 10^{-4} M solutions of the ligands and their complexes in dimethylformamide at 25°C, using a 1cm seleca cell. Magnetic suscepibility of some complexes have been measured by Bruker-BM6. The molecular weights of the complexes have been determined cryoscopically⁽¹⁵⁻²⁶⁾.

2- Synthetic Methods :

Salicylaldehyde semicarbazone has been prepared consistent with previous method. A general procedure has been adopted for the preparation of complexes in neutral and basic medium . In neutral medium, an answer of 1 gm (0.003,0.004 0.008 mole) of nickel nitrate or acetate or carbonate, respectively in 5 ml water has been added to the answer of salicylaldehyde semicarbazone (0.003, 0.004, 0.008 mole) and one among the acid (salicylic or anthranilic or phthalic (0.003, 0.004, 0.008 mole) in 15 ml hot ethanol (the amounts in grams are listed in Table 1). The mixtures are refluxed for 3 hours followed by evaporation to half their volumes then cooled. The products are separated by filteration, washed with petroleum ether and dried. In basic medium, complexes are prepared by applying the identical amounts used for neutral medium, and after mixing the metal salts with the ligands and heating on a waterbath, caustic potash solution (1M) was added until pH of the solutions are adjusted to about 8-9. The mixtures are heated on a waterbath for half an hour, allowed to square then cooled. The products are filtered off and washed with petroleum ether and dried .

RESULTS AND DISCUSSION

The reaction of nickel (II) salts, salicylaldehyde semicarbazone and the carboxylic acids in 1:1:1 molar ratio in both neutral and basic medium can be represented by the following equations :

 $2NiX2.mH_2O + 2AH_2 + 2SCH_2 \rightarrow [Ni_2(AH_2)_2(SCH_2)_2X_n]Y_2 + 2mH_2O$

 $2NiX_2.mH_2O+2AH_2+2SCH_2+4KOH \rightarrow [Ni_2(AH)_2(SCH)_2] + 2KwX + 2m+4H_2O$

where $X=NO_3^-$ or CH_3COO^- or CO_3^{-2} ; $Y=NO_3^-$ or nothing; n=2 or 4 or 1; m=6 or 4 or 0; w=1 or 2; $AH_2 = SH_2$ or AnH_2 or PH_2 .

The resulting complexes are colored solid, soluble in dimethylformamide and dimethylsulphoxide. The elemental analyses and molecular weight determinations reveal that the complexes have the compositions $[Ni_2(AH_2)_2(SCH_2)_2(NO_3)_2](NO_3)_2$, $[Ni_2(AH_2)_2(SCH_2)_2Xn]$ and $[Ni_2(AH)_2(SCH)_2]$ in neutral and basic medium, respectively (Table 1). The molar conductivities of the complexes in 10⁻³ M dimethylformamide are determined, the values shown in Table 1 approach those expected for 1:2 and non electrolytes for complexes prepared in neutral medium and non electrolytes for complexes prepared in basic medium.

The room temperature magnetic moments of Ni (II) complexes are in the range of 1.36 - 2.29 B.M. per nickel atom (Table 1). The low magnetic values compared to the expected values for sixcoordinate high-spin octahedral complexes possibly attributed to the ligand participation.

The infrared spectra of SCH2 ligand (Table 2) shows a powerful band at 1600 cm-1 attributed to C=N group shifts towards a lower frequency on coordination thanks to the decrease of the bond order as a results of metal nitrogen bond formation. the subsequent strong band at 1700 cm-1 is attributed to C=O group. This value shifts towards a lower frequency on coordination in neutral medium, indicating the formation of chelation between the oxygen of the C=O group and therefore the metal ion. Meanwhile, in basic medium, this band is disappeared within the complexes and a replacement band has been observed at 1400 cm-1 because of bending enolic OH thereby establishing coordination of the ligand through the enolic oxygen atom(2). the looks of strong bands at 1630-1635 cm-1 and 1570- 1580 cm-1 attributed to v(C=N) + (O-C=N) and azine chromophore u(C=N-N=C), respect-tively, support the formation of enolic structure in basic medium. The position band of the ligand within the range 3200-3300 cm-1 is assigned to UNH remains unaltered within the complexes prepared in neutral medium indicating that there's no coordination through the NH group. Whereas in basic medium, this band is disappeared in basic medium because of the enolic form. The opposite strong bands at 3390, 3410 cm-1 and 1450 cm-1 are assigned to νNH_2 . These bands remain unaltered on complexation indicating that there's no coordination through this group and metal ion. Moreover the opposite wide band observes at 3500-3600 cm-1 is attributed to stretching vibration of phenolic hydroxyl shifts to lower frequency on complexation .The band at 1290-1310 cm-1 is attributed to the bending vibration of phenolic OH(31) shifts to lower frequency on complexation indicating the coordination of this group with the metal ion. Moreover the looks of a band at 1170 cm-1 which belongs to v(C-O) is shifted to higher frequency 1330 cm-1 on complexation indicating the coordination of oxygen atom. The spectra of substituted benzoic acids (SH_2 , AnH=, PH_2) show a good bands within the regions 3500-3600, 2900 and 3400 cm-1 thanks to the stretching vibration of carboxylic OH, phenolic OH in SH₂ and NH₂ group in AnH₂, respectively, this wide selection is due either to the inter or intra molecular hydrogen bonding. Within the spectra of the complexes it's tougher to watch the coordination because of the presence of various groups and hydrogen bonding. Whatever, within the complexes prepared in neutral medium this wide band is shifted to higher frequency. Whereas for complexes prepared in basic medium it's very difficult to watch the disappearance of this band, but it's well-known that this band is disappeared thanks to the deprotonation of the acid and therefore the formation of ionic form. The opposite two bands observed at 1370-1390 cm-1 and 1550-1570 cm-1 are thanks to the symmetric and asymmetric stretching frequency of carboxylic group, respectively. On complexation these bands are shifted to 1350- 1420 cm-1 and 1500-1575 cm-1, respecttively. The difference between the symmetry and asymmetry stretching vibration for COO- group (Δv =150-180 cm-1) gives indication about the way of coordination of carboxylic group, this value shows that the acid coordinate through COO- group which act as monodentate. The complexes in neutral medium which contain nitrato group show two reasonably bonding, because the looks of the bands at 1380-1385 cm-1, 1400-1480 cm-1, 1285-1365 cm-1 945- 1010 cm-1 because of the ionic bonding , usNO3, uasNO3 and uNO (u2, u1 , u5), respecttively. The difference between u1-u5 equel to 115 cm-1 which supports the bonding of nitrato group as monodentate ligand through the oxygen atom . Whereas, the complexes prepared in basic medium don't show any of those bands indicating the absence of NO3- group in these complexes.

The spectra of the complexes prepared in neutral medium show stretching vibration for carbonyl CO_3 ⁻² group at 1480 and 1550 cm⁻¹ which indicate that the carbonato group act as monodentate ligand bonding to the metal ion through the oxygen atom^(11,). Whereas the complexes prepared in basic medium do not show any band indicating the absence of carbonato group.

The spectra of the other complexes prepared in neutral medium show two stretching vibration of symmetric and asymmetric acetate group at 1350 and 1400 cm⁻¹ indicating that the CH_3CO_2 group joint to the metal ion through the oxygen atom and act as monodentate ligand⁽¹¹⁾. Meanwhile there is no band observed in the spectra of the complexes prepared in basic medium indicating the absence of this group.

On the other hand the spectra of all the complexes show new bands around 450-675 cm⁻¹, 550-750 cm⁻¹, and 750-770 cm⁻¹ due to $\upsilon_{M-N, \cup M-O}$ and υ_{M-O-M} , respecttively. The presence of these bands support the formation of the complexes under investigation and the formation of dimer due to the presence of υ_{M-O-M} in the spectra of the prepared complexes in basic medium .

The electronic spectra of some complexes in dimethylformamide solution have been recorded giving d-d transitions and charge transfer spectra (Table-3) . Nickel (II) complexes show absorption bands at 7196-10193 cm⁻¹, 10152-18348 cm⁻¹ and 24390-25641 cm⁻¹ due to υ_1 , υ_2 and υ_3 {attributed to the transitions ${}^{3}A_{2}g$ (F) $\rightarrow {}^{3}T_{2}g$ (F), ${}^{3}A_{2}g$ (F) $\rightarrow {}^{3}T_{1}g$ (F) and ${}^{3}A_{2}g$ (F) $\rightarrow {}^{3}T_{1}g$ (P)}, respectively, are expected for d⁸ system in octahedral field (²³⁾. The ligand field parameter B and the ligand field splitting energy (10Dq) in case of nickel (II) complexes have been calculated⁽³⁾. The values of β of the complexes are between 0.72-0.84 clearly indicate the covalent character of the bond concerned. However, the electronic spectral data suggest distorted octahedral geometry for all the complexes

CONCLUSION:

Salicylaldehyde semicarbazone acted as tridentate chelating ligand on coordination with nickel (II) ion through the azomethine nitrogen and the two oxygen atoms of the carbonyl and phenol groups.

Substituted benzoic acids acted as either monodentate or bidentate chelating ligands. NO_3^- ion acted in two manars in the complexes, two group acted as monodentate ligand joint to the metal ion through the oxygen atom and the two others acted as counter ions. Carbonato and acetate groups acted as monodentate ligands. Binuclear complexes have been suggested with distorted octahedral geometries (Figure 2).

Figure 2 : Model structures of the complexes

(A1,A2,A3) Compl	lexes in neutral	medium ; (B)	complexes in	basic medium '	Y= O or NH or COO
------------------	------------------	--------------	--------------	----------------	-------------------

No.	Complexes	A*	A*	Colour	М.	^M	M.P	μeff	% analy			
		SCH ₂	AH ₂		Wt.	**	°c	***	С	н	Ν	Ni
		gm	gm		Calc./							
					Obs.							
1.	[Ni ₂ (SH ₂) ₂ (SCH ₂) ₂ (NO ₃) ₂] (NO ₃) ₂	0.61	0.46	Pale	996	16	150d	2.21	36.19	3.01	14.06	11.79
				green	980	1			35.88	2.95	13.29	10.71
2.	[Ni ₂ (AnH ₂) ₂ (SCH ₂) ₂ (NO ₃) ₂](NO ₃) ₂	0.61	0.41	Green	966	12	180d	1.95	37.28	3.31	17.40	12.16
					950	9			36.89	3.18	17.22	11.63
3.	[Ni ₂ (PH ₂) ₂ (SCH ₂) ₂ (NO ₃) ₂] (NO3)2	0.61	0.57	Dark	1056	10	275d	1.93	36.38	2.84	13.26	11.12
				green	1041	5			35.96	3.00	12.98	11.61
4.	$[Ni_2(SH)_2(SCH)_2]$	0.61	0.46	Pale	744	0	275d	2.16	48.12	3.49	11.20	15.79
				green	725				47.98	3.29	10.89	15.54
5.	[Ni ₂ (AnH) ₂ (SCH) ₂]	0.61	0.41	Pale	714	10	290d	1.80	50.46	3.92	15.69	16.45
				green	700				49.98	4.06	15.32	16.86
6.	$[Ni_2(PH)_2(SCH)_2]$	0.61	0.57	Pale	804	0	260d	2.16	47.79	3.23	10.22	14.12
				green	780							14.61
7.	$[Ni_2(SH_2)_2(SCH_2)_2(Ac)_4]$	0.71	0.54	Green	984	30	245d	2.04	46.36	4.27	8.54	11.93
					969				45.97	4.09	8.36	11.24
8.	$[Ni_2(AnH_2)_2(SCH_2)_2(Ac)_4]$	0.71	0.48	Pale	954	5	290d	2.18	47.82	4.61	11.74	12.31
_		0.74	0.00	green	935		0.001		47.55	4.49	11.55	11.25
9.	$[NI_2(PH_2)_2(SCH_2)_2(AC)_4]$	0.71	0.66	Pale	1044	23	260d	2.04	46.00	4.25	8.05	11.25
10		0.74	0.54	green	1021	10	2001	2.04	46.10	4.00	8.00	10.21
10.	$[NI_2(SH)_2(SCH)_2]$	0.71	0.54	Pale	744	18	280d	2.04	48.42	3.49	11.29	15.79
11		0.71	0.49	green	730	0	2004		F 4C	2.02	15.00	15.02
11.		0.71	0.48	Pale	714	0	2900	-	5.40 40.05	3.92	15.09	16.45
12		0.71	0.66	Balo	005 904	12	2054	2.04	49.95	4.55	10.45	10.40
12.		0.71	0.00	rale	701	12	295u	2.04	47.79	5.25	10.45	12 52
12		1 5 0	1 1 4	Balo	701 970	27	2704	1 90	11 26	2 / 5	0.69	12.52
13.		1.50	1.14	green	855	21	2700	1.09	44.20	2 20	9.00	13.55
14	[Nii (ApH.) (SCH.) (CO.)]	1 50	1 05	Balo	033	5	285d	1 36	45.00	3.29	3.43 12 27	14.02
14.		1.50	1.05	green	825	5	2050	1.50	45.65	3.62	17.57	13.75
15		1 50	1 20	Bala	023	16	2004	1.02	43.333	4.02	14.45	12.73
10.		1.50	1.59	raie	521	10	230U	1.55	43.33	5.25	9.05	12.00

Table 1: Amounts, analytical and physical properties of some complexes

Available online at www.lbp.world

STUDIES ON SOME NICKEL (II) COMPLEXES CONTAINING MIXED LIGANDS

VOLUME - 7 | ISSUE - 12 | SEPTEMBER - 2018

				green	915				43.59	3.11	8.86	12.37
16.	$[Ni_2(SH)_2(SCH)_2]$	1.50	1.14	Pale	744	12	220d	-	48.42	3.49	11.24	14.61
				green	730							14.06
17.	$[Ni_2(AnH)_2(SCH)_2]$	1.50	1.02	Pale	745	10	288d	2.29	53.97	3.65	11.80	16.45
				green	730							16.04
18.	$[Ni_2(PH)_2(SCH)_2]$	1.50	1.39	Green	804	9	284d	2.18	47.79	4.23	10.45	14.61
					779							15.31

*A : Amounts ; ** Λ_M : Molar conductivities in Ω^{-1} cm² mol⁻¹ ; *** μ_{eff} : Magnetic moment in Bohr Magneton ; d=decomposition point ; M. Wt. = Molecular weight

No.	U _{C=N}	υ _{C=0}	U _{C-0}	U _{C-0}	US _{Coo}	υ _s C _{oo}	υNO₃	U _{М-О-М}	υM-N	υM-O
		semi	semi	phen	acid	acid	υAc			
							υCO3 ⁻²			
SCH ₂	1600	1700	-	-	-	-	-	-	-	-
1	1500	1650	-	1250			1385	-	600	650,
										700
2	1500	1620	-	1230			1385	-	600,	700,
									675	800
3	1575	1620	-	1230			1385	-	600	700,
4	1520		1200	1250				750	500	750
4	1520	-	1360	1250			-	750	500	550, 600
E	1590		1250	1240	1250	1500		770	450 50	600
5	1300	-	1330	1240	1550	1300	-	//0	450,50	050, 750
6	1590	_	1345	1275			_	770	550	600
0	1350		1345	1275				//0	550	675
7	1570	1640	-	1200	1370	1550	1350	-	650	675,
										750
8	1555	1630	-	1200	1375	1550	1350	-	500,	650,
									550	725
9	1575	1650	-	1200	1360	1540	1400	-	575	600,
										700
10	1570	-	1360	1200	1375	1550	-	760	500	550,
										600
11	1570	-	1350	1200	1375	1550	-	760	550,	575,
									450	600
12	1570	-	1350	1200	1400	1550	-	770	500	600,
12	1550	1050		1250	1200	1550	1 4 0 0		550	675
13	1550	1650	-	1250	1360	1550	1480	-	550	600, 650
1/	1550	1650	_	1250	1300	15/0	1500	_	575	650
14	1330	1030	-	1230	1390	1340	1300	-	500	700
15	1540	1650	-	1250	1375	1550	1550	-	575	675
	10-10	1050		1230	1375	1330	1350			720
16	1540	-	1340	1250	1375	1500	-	770	550	650.
				0						700
17	1550	-	1350	1250	1360	1500	-	770	600,	700,

Table 2 : IR spectra of complexes (values in cm⁻¹)

									500	750
18	1550	-	1350	1250	1370	1500	-	770	550	650,
										750

No.	ບ ¹ cm ⁻¹	υ² cm ⁻¹	ບ ³ cm ⁻¹	Charge transfer cm ⁻¹	B cm ⁻¹	10Dq cm ⁻¹	Dq/B	υ ₃ / ν ₁	β	C.F.S.E. cm ⁻¹
1	9569	10152	25062	29154	434	9569	2.20	1.06	0.40	11483
3	10183	18330	24813	3333	839	10183	1.21	1.80	0.77	12220
6	7196	12953	24692	28571	1070	7196	0.67	1.80	0.90	8636
7	10194	18349	25124	8571	859	10194	1.19	1.80	0.79	12232
12	10066	18119	24390	28653	821	10066	1.22	1.80	0.75	12079
13	9451	13037	25641	28653	688	9451	1.37	1.37	0.63	11341
16	-	-	24510	28653	-	-	-	-	-	-
18	13228	13228	24390	28571	1038	13227	0.70	1.80	0.95	8818

Table 3 : Electronic spectral data of some complexes

REFERENCES

- 1- G. Eichhorn and L. Marzilli; Advances in inorganic biochemistry; Elsevier Sci. Pub. Company, Inc., New York, 1982, 87,134,152,172, 176, 191.
- Q. Zhang, J.J. Zhai, Y.R. Zhang, Y.M. Lin, L.F. Wang, S.B. Li, D.E. Liao and G.Transit. Met. Chem.; 2000, 25(1), 93.
- 3- M. Joudadel, X.D. Thanh, G. Bonet, S. Bonneau and M.A.Khan; Anticancer Res.; 2002, 22(3), 1713.
- 4- B. Singh, P.L. Manrya and B.V. Agarwala; J. Indian Chem. Soc.; 1982, 6, 1130.
- 5- M. Campbell, C. Elizabeth and N.R. Verno; *Polyhedron* ; 1988, 7(18),1719.
- 6- D.D. Yin, Z.W. Wang and L. Shan; Chinese J. Chem.; 2000, 18(3), 364. 7- A. Seyam, A. Jarrar and F. Khalili; J. Abhath Al-Yarmouk Basic Sci.; 2001, 2A, 243.
- 8- N. Kanoongo, R.V. Singh and J.P. Tandon ; J. Synth. React. Inorg. Met-Org. Chem.; 1987, 17(8), 837.
- 9- N.C. Kasuga, K. Sekino, C. Koumo, N. Shimada and I.M. Normiya; J. Inorg. Biochem.; 2001, 84(1-2), 55.
- 10- J. Patole, S. Dutta, S. Padhye and E. Sinn; *Inorg. Chim. Acta*; 318, 207.
- 11- G.A. Wilkinson, R.D. Gillard and J.A. McCleverty; Comprehensive Coordination Chemistry; Pergamon Press Oxford, England, 1987, **2**, 1st ed., 355, 357, 437- 439, 715.
- 12- K. Wieghardt, H. Siebert and G. Tremmel; J.C.S. Dalton Transfer; 1973, 23, 2548.
- 13- S. Jagner, R.G. Hazell and K.P.Larsen; *Acta Cryst.*, 1976, **B 32**, 548.
- 14- D.A. d, Avignon and T. L. Brown; *Inorg. Chem.*; 1982, 21, 3041.
- 15- N.G. Palaskar, D.V. Jahagirdar and D.D. Khanolkar; J. Indian Chem. Soc.; 1975, 14, 134.
- 16- I.R. Desai and V.S.K. Nair ; J.C.S. Dalton Trans.; 1962, 22, 2360.
- 17- Z. Afrasiabi, E. Sinn, W. Lin, Y. Ma, Ch. Campana and S. Padhye; J. Inorg. Biochem.; 2005, 00, 0000.
- 18- Js Casas, A. Castineira, A.M. Rodrigues, A.Sanchez, J. Sordo, A. Vazquez-Lopez, S. Pinelli, P. Lungli, P. Ciancianaini, A. Bonati, P.D. Aglio and P. Albertini; *J. Inorg. Biochem.*; 1999, **76** (3-4), 277.
- 19- P. Bindu, M. R. P. Kurup and T. R. Satyakeerthy; Polyhedron; 1998, 18, 321.
- 20- R. Ramesh and M. Sivamasundari; Synth. React. Inorg. Met-Org. Chem.; 2003, 33(5), 899.
- 21- Z.F. Dawood, S.H. Hessein and M.A. Al-Shama,a; Sci. & Tech.A; 2004, 12, 71.
- 22- Z.F. Dawood and Y.T. Mahmood; *Raf. Jour. Sci.*; 2006, 17(4), 1.
- 23- Z.F. Dawood and A.A.Mohamad; Al- Taqani; 2006, **19**(2),100-108.
- 24- Z.F. Dawood, and Y.T. Mahmood; National J. Chem.; Accepted in 2007

- 25- A. I. Vogel; Textbook of Quantitative Inorganic Analysis; Longman Inc., New York, 1981, 4th ed., 457, 461, 463, 470, 477, 489.
- 26- J.W. Danials; Experimental physical chemistry ; McGraw-Hill , 1962, 6th ed., 81.