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§ 1: INTRODUCTION 

Integral inequalities involving functions and their derivatives have been established by many authors 
in the literature during the past several years, see [3,4]. This paper is concerned with two theorems through 
which some new integral inequalities are introduced. One of them, in special case gives an existing inequality 
(1.1) which has been established in a book by Hardy, Littlewood and Polya [3, chapter VII, Theorem 254]. 

 
The existing inequality is: 
If µ > 4, 푦(0) = 0, 푦(1) = 1 and 푦 ′ ∈ 퐿 (0,1), then 
 

(A)    ∫ µ푦  − 푑푥 >                                                           (1.1) 

 

Where 푘 = ( − )  

 

 and finally we have           ∫ µ푦  − 푑푥 >  0 

 
‘Calculus Of  Variations’ plays a very important role to establish integral inequalities. From theory of  

‘Calculus Of  Variations’ we get  ‘Euler’s equation’ as necessary condition for existence of extremal Y  
[3,chapter VII ,7.1]which is    

 
 =                                                               (1.2) 

 
Now   Euler’s equation (1.2) is applicable for functions of the form    퐽(푦) = ∫ 퐹(푥, 푦, 푦′)푑푥     .                                   
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    One of the methods in ‘Calculus of  Variations’ to prove integral inequalities is by using `Hilbert’s 
invariant integral’ which is 
 
퐽∗(퐶) =  ∮{ 퐹 − 푝퐹 푑푥 + 퐹  푑푦}                                                                   (1.3) 
  

If the integral is taken along the extremal  퐸 , then using property of  ‘Hilbert’s invariant integral’ 
[3,chapter  VII,7.5] we have 

 
퐽(퐶) − 퐽(퐸)    = ∮ Є (푥, 푦, 푝, 푦 )푑푥                                         (1.4) 
 
Where 
 
Є(푥, 푦, 푝, 푦′) = 퐹(푥, 푦, 푦′) − 퐹(푥, 푦, 푝) − (푦 − 푝)퐹 (푥, 푦, 푝)                       (1.5) 
 

Where 퐶 is any curve in the region covered by the field and the integral is taken along 퐶. Here 퐹 and 
퐹푝 are the values of 퐹 (푥, 푦, 푦 )  and 퐹  (푥, 푦, 푦′)  when 푦’ is replaced by 푝 and Є is Weierstrass’  exess 
function’. If Є > 0 whenever 푦 ≠ 푝 then 퐽(퐸) < 퐽(퐶) and E gives a true minimum of  퐽.       

Our first theorem is proved in two different methods . One method is done using the knowledge of 
transformation and ‘Euler’s equation’ from Calculus of Variations. In another method we use  `Hilbert’s 
invariant integral’ to prove the inequality. In Theorem 2 we also use Hilbert’s invariant integral’which is an 
explicit application of ‘Calculus Of  Variations’. 

 
Statement of Theorem 1 : 

Theorem 1: If 푦  = 푦(0) = 푘, 푘 =
( )  

 ,   a (≠ 0) ,b are real numbers ,  푚 = +  (    −    ) , µ > ,  

푦 푦(1) = 1, 푦 ′ ∈ 퐿 (0,1) ,then 

(B)    ∫ µ푦  −
( )

푑푥 =   ( )
( )

+ µ ∫ 푦 −
 

( )
푑푥 

Where 푟 = ( − )  and for   a(>0)  ,  b (≥ 0) we have the inequality  

 

(B)          ∫ µ푦  −
( )

푑푥 >  0 

 
Statement of Theorem 2 : 
Theorem 2 : If   푦 = 푦(0) =0 , 푦 = 푦(1)= 0 and  y’⋲  L2  (0,1) , then  

   ∫
( )

 푑푥  <  ∫ 푦 ′ 푑푥  ,    
unless  푦 =  푐푥 ( 1 − 푥 ) 
 
§2 : In this paper we give the first proof of Theorem 1 .    
 
First proof of Theorem 1   : 

Let       퐹( 푥, 푦 , 푦’) = µ푦′ − ( )    

 

Then Euler’s equation (1.2) becomes  ( )   = 2µ푦  

 

푖. 푒 푦 +  ( )   = 0           푤ℎ푒푟푒 휆 = , so  0 < 휆 <                                      (2.1) 
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We take       (푎푥 + 푏) =et , and  휃 ≡    

 
Then equation (2.1) becomes   푎 휃 푦 −  푎  휃 + 휆푦 = 0                                 (2.2) 
 
whose auxiliary equation is  푎 푙 −  푎 푙 + 휆 = 0                                                (2.3) 
 
Roots of the auxiliary equation (2.3) are  
 

푙 = √   = ± −                                                                               (2.4) 

 
Case 1:                                                           

If     <     , we have distinct roots of 푙. Then the general solution of (2.1)  is     

 

푦     = 푐  푒
         

+ 푐  푒
        

 
 
                                                     = 푐  (푎푥 + 푏) + 푐 (푎푥 + 푏)                     (2.5)                
                           

Where   푚 = +  −                                                                                            (2.6) 

 

and      푛 = − −                                                                                       (2.7) 

 

Now 푦 = = 푐  푚푎(푎푥 + 푏) + 푐 푛푎(푎푥 + 푏)                      (2.8)       
  
푦 = 푐  푚 푎 (푎푥 + 푏) + 푐 푛 푎 (푎푥 + 푏)  + 2푐  푐 푚푛푎 (푎푥 + 푏)        (2.9) 
 
as    푚 + 푛 = 1  

∫ 푦 =   ( )  +   ( )  
+  [2푐  푐 푚푛푎 푙표푔(푎푥 + 푏)]        (2.10)        

                                                        
From (2.6) and (2.7) we have 
 

 2푚 − 1 =  2  −                                             푎푛푑          2 푛 − 1 = −2   −                      

 

Since    <      , 2m-1 is a positive quantity  and  2n-1  is a negative quantity.  

 

Hence from (2.10) the terms  
( )  

 푎푛푑  2푐  푐 푚푛푎 푙표푔(푎푥 + 푏) is undefined for x=0 and b=0. 

So the integral ∫ 푦  in (2.10) only exists when 푐 = 0 
 
Hence  the general solution  of (2.1) from (2.5 ) is   푦 = 푐  (푎푥 + 푏)                              (2.11)      
 

Case2:      If  =    , we have  equal roots for  the equation (2.3) i.e  푙 =  

Hence the general solution of (2.1) is               푦(푡) = (퐴 + 퐵푡)푒
 
                                (2.12) 
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Where A and B are arbitrary constants. 
 

So                            푦(푥) = (퐴 + 퐵푙표푔(푎푥 + 푏))푒  ( )                                              (2.13)          
 

or                           푦(푥) = (푎푥 + 푏) (퐴 + 퐵푙표푔(푎푥 + 푏))                                               (2.14) 
 

                     푦 =  푎(푎푥 + 푏)  (퐴 + 퐵푙표푔(푎푥 + 푏)) + (푎푥 + 푏)
( )

              

            

                        = 푎 + 퐵  (푎푥 + 푏)  +  (푎푥 + 푏)  푙표푔(푎푥 + 푏)                          (2.15) 

 

푦′ = ( ) +
( )

( ) + 푎  퐵 + 퐵  (푎푥 + 푏)  푙표푔(푎푥 + 푏)                   (2.16) 

 

푦 =  푎
퐴
2

+ 퐵
 

 푙표푔(푎푥 + 푏)  +
푙표푔(푎푥 + 푏)
(푎푥 + 푏) 푑푥   

+ 푎  퐵
퐴
2

+ 퐵  (푎푥 + 푏)  푙표푔(푎푥 + 푏) 푑푥                  (2.17) 

 

`Now  푙표푔 (푎푥 + 푏) is not defined for 푥 = 0, 푏 = 0. So the integral  ∫ 푦  in (2.17) does not exist. So 
in this case the solution 0f (2.1) does not exist. 

So the only solution of (2.1)  for which 푦′ ⋲ 퐿  is           푦 = 푐  (푎푥 + 푏)       
 

Where   푚 = +  −     

 

Using initial conditions If y0 = k ,    k   =   ( )     ,     y1 = 1 

 

                 푐 푏  = ( )                                    (2.18) 

               푐 (푎 + 푏)  = 1                                     (2.19) 
 

From (2.18) and (2.19) we get                푐 = ( )                             (2.20) 

So the extremal from (2.11)  is     푌 =  ( )
(푎푥 + 푏)               (2.21) 

 

                                                        푌 =  
( )

    
(푎푥 + 푏)     

 using (2.6) 

 

                                                        푌 =  
( )  

(푎푥 + 푏)                 (2.22) 

                               

Where  푟 =  −     ,   푟 =  −   ,         휇 =
            

,  as λ=    by (2.1)           (2.23) 

Then           푌′ =  
         

( )  
(푎푥 + 푏)                                                             (2.24) 
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푌′ =  
       

( )  (푎푥 + 푏)                                                                          (2.25) 

 

Now  퐽(푌) = ∫ µ푌  −
( )

푑푥 

= ∫ µ
       

( )  (푎푥 + 푏)    − ( )  ( )  

( )
푑푥                   using (2.22) 

 

=
µ 푎    

 
+ 푟   − 1

(푎 + 푏)  (푎푥 + 푏)  푑푥 

 

=
µ 푎    

 
+ 푟   − 1

(푎 + 푏)   
(푎푥 + 푏)

2푟푎
 

 

                                     = 
    

 
  

( )   ( )
         using (2.1)  휇 =

            
 

 

=
     

 
   

(푎 + 푏)   
(푎 + 푏) − 푏

2푟푎
 

 

=
   

 
   

(푎 + 푏)   
(푎 + 푏) − 푏

2푟푎
 

 
 

                                                =  ( )
( )

                                               (2.26) 

 
                       
Now we take the  transformation 푦 = 푌 + 휂                  (2.27)             
 

     퐽(푦) = ∫ µ푦  −
( )

푑푥         

 

         = ∫ µ(푌 + 휂′)  – ( )
( )

푑푥         using  (2.27)   

 

          = ∫ µ푌  −
( )

푑푥   +    ∫ µ휂  −
( )

푑푥+ 퐾(푌, 휂) 

 
 
          = 퐽(푌)+ 퐽(휂) +  퐾(푌, 휂)                                                           (2.28) 
 

Where 퐾(푌, 휂) = ∫ 2µ푌′휂 −
( )

푑푥                             

                             = 2 [µ푌′휂]   
 − µ ∫ 푌 휂푑푥 − ∫

( )
푑푥             (2.29) 
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Now 푌’ is a continuous function and   휂(0)  = 휂(1) = 0   using  (2.27)  and  given initial conditions. 
So [µ푌′휂]   

 = 0 then (2.29) becomes 
 

퐾(푌, 휂) = −µ 푌 휂푑푥 −
푌휂

(푎푥 + 푏)
푑푥  

 

= − µ푌 +
푌

(푎푥 + 푏)
휂푑푥  

 

Now 푌 is the solution of the equation (2.1) .So  µ푌 +
( )  

 = 0 . Hence 퐾(푌, 휂) = 0 

 
   푠표                                퐽(푦) = 퐽(푌)+ 퐽(휂)                                                   ( 2.30) 
 
Again  we take the transformation 휂 = 푌휁                                                ( 2.31) 
 

퐽 (휂) = µ휂  −
휂

(푎푥 + 푏)
푑푥 

 

= µ(푌 휁 + 푌휁′) −
푌 휁

(푎푥 + 푏)
푑푥 

 

= ∫ µ(푌′ 휁 + 푌 휁′ + 2푌푌′휁휁′) −
( )

푑푥                                      ( 2.32) 

 
Now  
 

∫ 2푌푌′휁휁′푑푥 = ∫ 2푌푌′푑휁 = [푌푌′휁 ]  −  ∫ (푌′ + 푌푌 )휁 푑푥  ( 2.33) 
  

Now  푌푌′휁 =   =                                                               ( 2.34) 

 
Now Y’ is continuous and  Y(1)=1 and η(1)=0,using initial conditions and the transformation (2.27) 

.So 푌푌′휁 = 0  at  x=1. 
 

Now (2.32) becomes 
 

퐽 (휂) = µ 푌 휁 + 푌 휁 푑푥 − µ 푌푌 −  µ 푌 + 푌푌 휁 푑푥
 

–
푌 휁

(푎푥 + 푏)  
푑푥 

 
                                                                                                                                            using (2.32) 
 

     = ∫ µ 푌 휁 푑푥 − µ 푌푌 −  ∫ µ푌 +
( )  

푌휁 푑푥
 
 

 

     = ∫ µ 푌 휁 푑푥 − µ[푌푌′휁 ]
 
                                                                              (2.35) 

 

As Y is the solution of the equation  (2.1) .So  µ푌 +
( )  

 = 0 
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퐹푟표푚 ( 2.34)    푌푌′휁 = =  

         

( )  
( )     

( )  
( )   

 using (2.22) and (2.24) 

 

=
푎     

 
+ 푟   

(푎푥 + 푏) 휂  

 

For x=δ,     푌푌′휁 =
         

( ) 휂 (훿)         (2.36)  

 
Case 1 : if b≠0, then  lim

→
 [푌푌′휁 ]   =0 from (2.36) as   lim

→
휂(훿)=0 

 

Case 2: if b=0,   lim
→

 [푌푌′휁 ] =   lim
→

         

( ) 휂 (훿) =    
 
+ 푟     lim 

→

( ) = 0 

 
Since Y’ and 푦′ are in 퐿 , using transformation  (2.27) η’ is also in 퐿 and so η=o(√푥) (theorem 222, 

Hardy, Littlewood, Polya) 
 

So in all cases    lim
→

 [푌푌′휁 ] = 0                             (2.37) 

 

So  퐽(휂) =   lim
→

퐽 (휂) =   lim
→

∫ µ 푌 휁 푑푥 − µ  lim
→

푌푌
 
 

 

= ∫ µ 푌 휁 푑푥   using (2.37)                                                    (2.38) 
 
Now from (2.31) we have                        휂 = 푌휁  
 

휂 = 푌 휁 + 푌휁′ 
 

So   푌휁 =  휂 − 푌 휁 =휂 −  
         

( )  
(푎푥 + 푏)    

( )  

( )  

    using (2.24) (2.31) and (2.22) 

 

So     푌휁 =  휂 −  푎     
 
+ 푟   ( )   

 

= (푦 − 푌′)  −  푎     
 
+ 푟   (  )

( )         using (2.27) 

 

      = 푦 −  
푎     

 
+ 푟   

(푎 + 푏)  
(푎푥 + 푏)     −      

푎     
 
+ 푟    푦 − ( )  

( )  
 

(푎푥 + 푏)  

 
                                                                                                                using(2.24)  and (2.22) 
 

                = 푦 −       
         

( ) 푦                                                         (2.39) 

 
Now from (2.30)we have        퐽(푦) = 퐽(푌)+ 퐽(휂) 
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                                    =  ( )
( )

+ µ ∫ 푦′ −   
         

( ) 푦 푑푥  (2.40)  

 
Using (2.38), (2.39) and (2.26) 

Which is our required equality of Theorem 1.We also prove this equality by using `Hilbert’s invariant 
integral’. 
 
§3: Alternative proof of Theorem 1: 
This   proof is  done by using `Hilbert’s invariant integral’  

Here  푦 = ( )  

( )  
             using (2.22)                                                     (3.1) 

 

푝 =  훼
           

( )  
(푎푥 + 푏)         using (2.24)                  

 

푝 = 푎     
 
+ 푟                          using (3.1)                                                        (3.2) 

 

From §2 we have   F( x, y , y’) = µ푦′ − ( )                  (3.3) 

 
   퐹 = 2µ푦′                      (3.4)   ,     

     퐹 = 2µ푝 = 2µ푎     
 
+ 푟      ,  using    (3.2)                              

 

                     = 2푎
            

     
 
+ 푟                       using (2.23) 

 

                      =
            

                                                  (3.5)  

 

Now  퐹 − 푝퐹 = µ푝 − ( ) − 푎     
 
+ 푟    

( )             
   

( )
                

                                                                                                                             Using   (3.2),   (3.3),   (3.5) 
 

=
            

푎     
 
+ 푟     − ( ) −

       

         
   

( )
                 using (2.23) 

 

= ( )

       

            
− 1 − 2

       

         
    = − ( )

       

            
+ 1   

= − 
          ( )

      (3.6) 

                                                                                                           
Now  from (1.5)      퐽∗ =  ∫ 퐹 − 푝퐹 dx +  퐹  푑푦   
 
So 
 

   퐽∗ =   ∫ − 
         ( ) dx +

            
    푑푦    using (3.5) and (3.6)        
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=
1

푎     −    푟  

−푎푦  푑푥 + 2푦(푎푥 + 푏)푑푦
(푎푥 + 푏)   

 

                                          = ∫ d
         ( )

    (3.7) 

 

                                         = ∫ dW ,  a perfect differential, where 푊 =
         ( )

  

 
Now from (1.9) Є(푥, 푦, 푝, 푦′) = 퐹(푥, 푦, 푦′) − 퐹(푥, 푦, 푝) − (푦 − 푝)퐹 (푥, 푦, 푝) 
 

= µ푦′ −
푦

(푎푥 + 푏) − µ푝 −
푦

(푎푥 + 푏)  − (푦 − 푝)2µ푝 

 
= µ(푦 −  푝)  

 

                                                                  = µ 푦 − 푎     
 
+ 푟     using (3.2)             (3.8) 

 
Now from (3.8) we have 퐽(퐶) − 퐽(퐸)  = ∮ Є (푥, 푦, 푝, 푦 )푑푥 
 

= ∫ µ 푦 − 푎     
 
+ 푟      using (3.8) 

 

So 퐽(퐶) =  ( )
( )

+ µ ∫ 푦′ −   
         

( ) 푦 푑푥  using (2.26 ) and(3.8) here 퐽(퐸) = 퐽(푌),Y 

being the extremal and x=0  and x=1 being the end points of the extremal .  
 

Hence ∫ µ푦  −
( )

푑푥 = ( )
( )

+ ∫ 푦′ −   
         

( ) 푦 푑푥    using (3.3) and (1.1) 

 
 
§4:   Now if   푎(> 0), 푏(≥ 0)   ; (푎 + 푏) − 푏 > 0 ,  
 

푟 =  −     > 0  푎푠    0 <  <              using (2.1) 

 

푟 =  
1
4

−  
휆

푎
  <

1
2

 

 

i.e 1 − 2푟 > 0 .Hence   ( )
( )

> 0 if   푎(> 0), 푏(≥ 0)    
 
so we have from the equality of Theorem 1  
 

µ푦  −
푦

(푎푥 + 푏)
푑푥 > µ 푦′ −   

푎     
 
+ 푟   

(푎푥 + 푏) 푦 푑푥 
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which gives the inequality of Theorem 1 i.e 
 

µ푦  −
푦

(푎푥 + 푏)
푑푥 > 0 

 
which completes the proof of Theorem 1. 
 
 §5: In this article we prove Theorem 2. 
 
This inequality is also proved by using `Hilbert’s invariant integral’. 
 

Here  we take  퐹( 푥, 푦 , 푦’) = 푦′ − ( )                                         (5.1) 

 

 Then Euler’s equation (1.2) becomes  ( )  = 푦  

 

which  gives   푦 + ( )  = 0                          

                                      
i.e  푥(1 − 푥)푦 + 2푦 = 0                                                                        (5.2) 
 
where the initial conditions are y0  = 0 , y1 = 0 
let 푦 = 훼푥(푥 − 1)  then 푦′ = 훼(2푥 − 1), 푦′′ = 2훼  
then (5.2) has solutions  푌 = 훼푥(푥 − 1)                                                  (5.3)   
 

Satisfying the initial conditions whatever be α.If E be a extremal passing through the end 
points(0,0)and (1,0) then E is of the from  푌 = 훼푥(푥 − 1).By  varying α we can define a field round any 
particular extremal. 

 

퐽(퐸) =
1
2

푌′ −
푌

푥(1 − 푥) 푑푥 

 

퐽(퐸) =
1
2

{훼(2푥 − 1)} −
{훼푥(푥 − 1)}

푥(1 − 푥) 푑푥 

 

퐽(퐸) = 훼
1
2

(4푥 − 4푥 + 1) + 푥(푥 − 1) 푑푥 

 

= 훼 ∫ 3푥 − 3푥 + 푑푥 = 훼 1 − + = 0  

 
So  퐽(퐸) = 0  for all α .                                                                                (5.4) 
 
From §1 we  have   
 
      퐽(퐶) − 퐽(퐸)  = ∮ Є (푥, 푦, 푝, 푦 )푑푥     using (1.4) 
 
     The integrals are taken along the curve 퐶. 
 
Where  Є(푥, 푦, 푝, 푦′) = 퐹(푥, 푦, 푦′) − 퐹(푥, 푦, 푝) − (푦 − 푝)퐹 (푥, 푦, 푝)            using  (1.5) 
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Here 푦 = 훼푥(푥 − 1)  then 푦 = 푝 = 훼(2푥 − 1) =
( )

푦                                             (5.5) 

 

From (5.1)  퐹( 푥, 푦 , 푦’) = 푦′ − ( ) 퐹 = 푦  ,so 퐹 = 푝                                              (5.6) 

 

Now  퐹 − 푝퐹 = 푝 −
( )

− 푝 = − 푝 +
( )

= −
( )

푦  +
( )

   

                                                                                                                                             using (5.5) 
 

= − ( ) ( )
( )                                                                                                         (5.7) 

 
Now  퐹 − 푝퐹 dx +  퐹  푑푦 
 

= − ( ) ( )
( ) 푑푥 +

( )
푦 푑푦     using (5.5)and (5.6) 

 

= − ( ) ( )
( ) 푑푥 +

( )
푦 푑푦   

     

= ( ) ( ) ( ) ( ( ))
( ) +

( )
2푦 푑푦   

 

= 푦 푑
( )

+
( )

 푑(푦 )   

 

= 푑 ( )
( )

  

 

= 푑푊  , a perfect differential,   where 푊=
( )
( )

                                               (5.8) 

 
Again from (1.9) we have  
 
Є(푥, 푦, 푝, 푦′) = 퐹(푥, 푦, 푦′) − 퐹(푥, 푦, 푝) − (푦 − 푝)퐹 (푥, 푦, 푝)             (1.9) 
 

= 푦′ − ( ) + 푝 + ( ) − (푦 − 푝)푝          using ((5.5) and (5.6) 

 

= (푦 − 푝)   > 0 , unless  푦’ = 푝                                                                                                  (5.9) 

 
So from (5.9) using (5.1), (1.8) and (5.4) 
 

we get   ∫ 푦′ − ( ) 푑푥 > 0 from which we get our required integral inequality 

 

∫
( )

 푑푥  <  ∫ 푦 ′ 푑푥   (5.10) 

 

y’ = p = =
( )

푦   using (5.5) 

 

=
( )

=
( )

푑푥  
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Solving we get 
 
퐿표푔 푦 = 푙표푔 푥 + 푙표푔 (1 − 푥) + 푙표푔 푐 where 푐 is arbitrary constants. 
 
So Using (5.9)   푦 = 푐 푥 ( 1 − 푥 ) gives the equality of (5.10). 
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