ISSN: 2249-894X
UGC APPROVED JOURNAL NO. 48514
IMPACT FACTOR : 5.2331(UIF)
VOLUME - 7 | ISSUE - 3 | DECEMBER - 2017

STUDY ON SOME INTEGRAL INEQUALITIES

Moumita Bhattacharyya' and Dr. Santanu Bhunia’
'Department of Pure Mathematics, University of Calcutta,
35 Ballygunge Circular Road , Kolkata.
2pssistant Professor in Mathematics, Fakir Chand College, Diamond Harbour,
South 24- Parganas, West Bengal, India.

ABSTRACT:
Present paper studies some integral inequalities involving real valued functions and their derivatives.
We try to generalise some inequalities which was introduced by Hardy, Littlewood and Polya.
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§ 1: INTRODUCTION

Integral inequalities involving functions and their derivatives have been established by many authors
in the literature during the past several years, see [3,4]. This paper is concerned with two theorems through
which some new integral inequalities are introduced. One of them, in special case gives an existing inequality

(1.1) which has been established in a book by Hardy, Littlewood and Polya [3, chapter VII, Theorem 254].

The existing inequality is:
Ifu>4,y(0)=0,y(1) =1andy’€ 1%2(0,1), then

® Jy{w? —Llax> o (11)

Where k = \/(E—ﬁ)

2
and finally we have f01 {uy’z - Z—z} dx> 0

‘Calculus Of Variations’ plays a very important role to establish integral inequalities. From theory of
‘Calculus Of Variations’ we get ‘Euler’s equation’ as necessary condition for existence of extremal Y
[3,chapter VII ,7.1]which is

3—5 =< (STF) (1.2)

Now Euler’s equation (1.2) is applicable for functions of the form J(y) = f;nl F(x,y,y)dx
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One of the methods in ‘Calculus of Variations’ to prove integral inequalities is by using "Hilbert’s
invariant integral’ which is

J*(€) = ${((F — pF,) dx + F, dy} (1.3)

If the integral is taken along the extremal E , then using property of ‘Hilbert’s invariant integral’
[3,chapter VII,7.5] we have

J(©) —J(E) =$E(x,y,py)dx (1.4)
Where
€Exy,p,Y)=F(yy)—Fyp)— Q@ —p)E&yp) (1.5)

Where C is any curve in the region covered by the field and the integral is taken along C. Here F and
Fp are the values of F (x,y,y') and Fy (x,v,y¥") when y' is replaced by p and € is Weierstrass’ exess

function’. If E > 0 whenever y' # p then J(E) < J(C) and E gives a true minimum of J.

Our first theorem is proved in two different methods . One method is done using the knowledge of
transformation and ‘Euler’s equation’ from Calculus of Variations. In another method we use ‘Hilbert’s
invariant integral’ to prove the inequality. In Theorem 2 we also use Hilbert’s invariant integral’which is an
explicit application of ‘Calculus Of Variations’.

Statement of Theorem 1:

p™ 1 1 1
Theorem 1: If y, = y(0) =k, k = G a (+ 0) ,b are real numbers, m = - + / (5 e ), n>
yi=y(1) =1,y € 12(0,1) ,then

2
1 12 y? _ (a+h)*"-p*" 2 1) a(%+r)y
(B) fo {P'y N (ax+b)2} dx = a(a+b)1+27 1-2r + P'fo {y - (ax+Db) dx

erer = |(>=——==) andfor a(>0) , b (= 0) we have the inequality
wh }}aiu) dfor a(>0) , b (= 0)we have the i l

4
a?’

1 ’ 2
B Jy (' —  dx > 0

Statement of Theorem 2 :
Theorem 2 :If y, = y(0) =0, y;, = y(1)=0and y€ L (0,1), then
1 y? 101
S5 prei dx < Zfoy dx ,
unless y = cx (1 —x)

§2 : In this paper we give the first proof of Theorem 1.

First proof of Theorem 1 :

AN 12 y2
let  F(xy,¥)=w" -

’ H -2y _ 17
Then Euler’s equation (1.2) becomes o = 2uy
. " Ay _ _1 4
i.ey" + @i = 0 where A = " so 0<A< 2 (2.1)
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Wetake (ax +b)=e',and = <

dt
Then equation (2.1) becomes a?8%y — a?6 +1y =0 (2.2)
whose auxiliary equation is a?l?> — a?l+1 =0 (2.3)

Roots of the auxiliary equation (2.3) are

2 4 _ 2
l=a+\/az4a/1=li l_iz (2‘4)
2a 2 \/4 a
Case 1:
If % < i , we have distinct roots of l. Then the general solution of (2.1) is

bl f,  Blid)
y =C1€ +C2€

=¢ (ax +b)™ + c,(ax + b)" (2.5)
1 1 2
Where m = 3 + i (2.6)
1 ,1 2
and n= 2 Az 2 (27)
Now y' = Z—z = ¢; ma(ax + b)™ ! + c,nalax + b)* 1 (2.8)
y'? = ¢, 2m%a%(ax + b)?™ 2 + ¢,2n2a?(ax + b)*"2 + 2¢, c;mna®(ax + b)~t  (2.9)

as m+n=1
0

fl 2 [c1 2mza(ax+b)2m_1] n
oY = 2m—1 1

1
]0 + [2¢; c;mnalog(ax + b)]y  (2.10)

[czznza(ax+b)2n_1
2n-1

From (2.6) and (2.7) we have

2m—1=2<1—iz) and 2n—1=—2< 1—12)
4 a 4 a

. 1
Since — <
a

=

, 2m-1 is a positive quantity and 2n-1 is a negative quantity.

c;’n?a(ax+b)?n1
B 2n-1
So the integral fo y’2 in (2.10) only exists when ¢, = 0

Hence from (2.10) the terms and 2c¢; c;mna log(ax + b) is undefined for x=0 and b=0.

Hence the general solution of (2.1) from (2.5)is vy = ¢; (ax + b)™ (2.11)
Case2: If% = i, we have equal roots for the equation (2.3)i.e [ =%

t
Hence the general solution of (2.1) is y(t) = (A + Bt)ez (2.12)
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Where A and B are arbitrary constants.

1
So y(x) = (A4 + Blog(ax + b))ez'°8 (2*+0) (2.13)
1
or y(x) = (ax + b)2(A + Blog(ax + b)) (2.14)
' =1 a(ax + b)"2(4 + Blog(ax + b)) + (ax + b)z ==
y' =7 alax og(ax ) ax (D)
1 1
= a(§+B) (ax+b)_5+§ (ax + b) " zlog(ax + b) (2.15)
A 2 aB 2
2 a(G+B)} | {Frogaxtn)) 2p (A -2
Y= (axi) a‘B (2 + B) (ax + b) " zlog(ax + b) (2.16)
0 aB 2
fi 5 [ {(A 2 ] 1{7log(ax+b)}
"= la —+B)} log(ax+ b +f dx
o y 2 9 ) . o (ax +b)
A 1 1
+azB(E+B)f {(ax+b)_510g(ax+b)}dx (2.17)
0

‘Now log (ax + D) is not defined for x = 0,b = 0. So the integral f01 y’2 in (2.17) does not exist. So
in this case the solution Of (2.1) does not exist.
So the only solution of (2.1) for which y' € I% is y =¢ (ax+ b)™

Where m=2+ [>— iz
2 4 a
L - B . pm B

Using initial conditions Ifyo =k, k = EPTSTN yi=1

o pm =2~ (2.18)

1 (a+b)™ :
c(a+b)™ =1 (2.19)
1
From (2.18) and (2.19) we get = @™ (2.20)
So the extremal from (2.11) is Y = (a+1b)m (ax + b)™ (2.21)
1 1 A
Y= ﬁ(ax + b)EJr‘JZ_a_2 using (2.6)
(a+b)2 N7 aZ
1 Iir
Y = — (ax + b)z (2.22)
(a+b)z*"

_ fl_ A 2_1_ 4 - r =1

Where r = T TTE LT u—az(%_ﬂ),as?\—# by (2.1) (2.23)
1 a ( l+r ) - l+T

Then Y= ——2—(ax+b) 2 (2.24)

(a+b)zt"
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1

y'2 = M (ax + b)~ 1+27 (2.25)

(a+b)1t2r

Now J(1) = [, {ur? - —L—Jax

(ax+b)?

using (2.22)

(a+b)1+2 r (ax+b)?

2 r
_f { ( .t —)} (ax +b)~ 1+27 _ (a+b)11+zr(ax+b)1+2 }dx

:[p.{a( l+r

(a + b)1+27

_1]f( + b)~1*27 dx

_ [“{a( R )}2 - 1] [(ax + b)zr]1

(a + p)rt+zr 2ra

[(=)-]
1_ _1
L \gr (a+b)?"—b?"

= T - ] using (2.1) u = 7{12( % — )

3 [22# ] [(a+b)2r_b2r]

~ (a4 b)r+2r 2ra

_2r
3 1—227‘ (a + b)Zr _ b2r
" (a+b)rt2r 2ra

2r_p2r
_ (a+b)*"-b 2 (2.26)

a(a+b)1+2r 1-2r

Now we take the transformationy =Y + 17 (2.27)

Jo) = Jy {wy? = =2} dx

(ax+b)

- fol {“(Y’ +n')? —M} dx using (2.27)

(ax+b)?
= fol {“YIZ (ax+b)2} x o+ f { T (ax+ b)z} dx+ K(Y,m)
=]+ + K(¥,n) (2.28)
Where K(Y,n) = fl{ZuY’r)’ - (aiz)z} dx
=2 {[uY’n - uf Y'ndx - | (axy%)zdx} (2.29)
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Now Y’ is a continuous function and 7n(0) =n(1) =0 using (2.27) and given initial conditions.
So [uY'n]y = 0 then (2.29) becomes

1 1 Yn

KY,n)=- Y'ndx— | ———d
( rn) l’l.[;) nax j(; (ax+b)2 X

L Y
— YII - d
fo {“ +(ax+b)2}n x

Now Y is the solution of the equation (2.1) .So pY"’ + =0.HenceK(Y,n) =0

(ax+b)?
so J) =J()+] () (2.30)

Again we take the transformationn = Y¢ (2.31)

1 2
Js(m) =f6 {WI'Z _—(axrzl- b)z}dx

1 272
- {H(Y’Z+YZ’)2—L}dx
I}

(ax + b)?
_r1 r 1 177 Y2g?
= J5 {n(r2¢2 +v2¢% 4 2vv'c0) —W}dx (2.32)
Now
Jy 2YY'{¢dx = [ 2YY'dg? = [YY'¢215 — [(Y'2 +YY")¢2dx (2.33)

Y Y'n2 _ v'p?
vz vy

Now YY'(? = (2.34)

Now Y’ is continuous and Y(1)=1 and n(1)=0,using initial conditions and the transformation (2.27)
SoYY'(? =0 at x=1.

Now (2.32) becomes

1 ) 1 ) ., 1 YZZZ
Js(m) = L n(r'*g2 +v2g*)dx —p[yy's] - L u(Y'? +vy")g2dx -L de
using (2.32)
= Jyu(r2e?)dx — vy, = 3 (0 + ) Ye2dx
= [y n(r2¢)dx — ulyy'¢?ls (2.35)

As Y is the solution of the equation (2.1) .So pY"” + =0

(ax+b)?
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1
a( 5+r _1
7(21 )(ax+b) 2t y2

12 +7

From (234) YY'¢? =" = (a+b)2 — using (2.22) and (2.24)

11 (ax+b) 277

(a+b)2t "
1
a ( Lir )

(ax + b) n

_ 172 __ a ( 21+T ) 2
Forx=5, YY'(*= s " €)) (2.36)

Case 1:if b0, then tsli%l [YY'¢?]s =0 from (2.36) as 61ir(1)1r;(5)=0

1
PRI o TRT a( 5+ ) 2cy _ 1 . nA(8)
Case 2: if b=0, (SlLrgl[YYZ]s—ler})l " (6)—( ~+7 )(%Ln(} 5 =0

Since Y’ and y' are in L?, using transformation (2.27) n’ is also in L?and so n=o(v/x) (theorem 222,
Hardy, Littlewood, Polya)

Soin all cases tsli%l [YY'¢?]s =0 (2.37)
— 1 I T 1 2712 . 172
So J() = JimJs() = Jim [ w(¥?¢"*)dx — p lim[yy'¢]
- f01 u(Y2¢'*)dx using (2.37) (2.38)
Now from (2.31) we have n=Y{
n/ — Y’Z + YZ’

[ 17 o1 a(zl+r) —1+T n :
So Y('=n'-Y'{=n'— —25+—=(ax+b) 27 ——5— using (2.24) (2.31) and (2.22)

(a+b)2 r (ax+b) 2t

1
(a+n)2t 7"

So Y{'=1n"—-a ( 21+r) u

(ax+b)

=W -Y)—-a ( 21+r )M using (2.27)

(ax+b)
1,
l+ a ( l+r )(y_(ax+b)1 )
, e lgTr . 2 (a+b)2* "
gl Gt vl C N (@x+b)
(a+b)2""
using(2.24) and (2.22)
_oals)
=y - W}/ (239)

Now from (2.30)we have  J(y) =J(Y)+](n)
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_ (a+b)?"-p?" 2

2
i, a(g+)
a(a+b)1*2r 1-2r + P-fo {y - W}/ dx (2.40)

Using (2.38), (2.39) and (2.26)
Which is our required equality of Theorem 1.We also prove this equality by using “Hilbert’s invariant
integral’.

§3: Alternative proof of Theorem 1:
This proofis done by using "Hilbert’s invariant integral’

1
alax+b)zt "

Here y = using (2.22) (3.1)

1
(a+b)z*"

1 1
p= aa(z—tr) (ax +b)~ 2*"  using (2.24)

(a+b)z*"
p=a ( 21+r ) axj;b using (3.1) (3.2)
From §2 we have F(x,y,y)=uy'? — (axJ;—zb)z (3.3)
Fyl = 2lJ.y’ (34) ’
F, =2up = 2pa ( 21+r ) prrrl using (3.2)
1 1 v .
= ZGW ( 2—+T ) axth using (223)
— 2 y
- g_( % - r ) ax+b (35)
_ o2 ¥y 1 y 2 y
Now F — pr = Hp (ax+b)? a ( 2 tr ) (ax+b) a( % - r) (ax+b)
Using (3.2), (3.3), (3.5)
_ 1 1 y ? y? (z+7) 2y .
N a2( 142 ) {a ( 2_+ r ) ax+b} B (ax+b)? B ( %2_ r ) (ax+b)? using (2.23)
o [ ee) ) e [ (o)
" | - @
— 7312
- ( % -r )(ax+b)2 (3.6)

Now from (1.5) J* = [{(F —pF,)dx+ E,dy}

So

. _ 1 2 2 .
I = f{_ (%_—T)(a;b)z} dx + {a( ) axy+b }dy using (3.5) and (3.6)
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a
- fd <a( % - r )(ax+b)) (3'7)
_ . . _ y?
= [ dW, a perfect differential, where W = <—a( T, )(ax+b))

Now from (1.9) €(x,y,p,¥") = F(x,y,y") = F(x,y,p) — (¢v' = p)E,(x,y,p)

(ax + b)2

1 f {—ay2 dx + 2y(ax + b)dy}
r)

N |~

12 y 2 Y !
S T S (R Sy
W T a2 T T (a1 b)? Oz
= uy' - p)*
2
_ H{y' —a ( Zl+r ) axyﬁ} using (3.2) (3.8)

Now from (3.8) we have J(C) — J(E) = $ € (x,y,p,y")dx

=fufy'—a (247 ﬂb}z using (3.8)

ax

. 2
b)2T—p2r 2 1 , a —+r .
SoJ(C) = (Z(J;JBWE"—“IO {y — %y} dx using (2.26 ) and(3.8) here J(E) =J(Y),Y

being the extremal and x=0 and x=1 being the end points of the extremal .

1
2 =+r

2
27 _ 321
Hence f01 {uy’z Y }dx —latb) b 2 +f01{y’— %y} dx using(3.3)and (1.1)

- (ax+b)? a(a+b)1*+2r 1-2r

§4: Nowif a(>0),b(=0) ;(a+b)* —b? >0,

2
a?

1 p) 1 .
r= ;- >0 as 0<; <Z using (2.1)

2
Ca?

N -

<

i

21 _ 321
iel—2r>0.Hence &2 22 5 ¢ a(>0),b(=0)

a(a+b)1+27 1-2r

so we have from the equality of Theorem 1

2
! 2 y? ! a ( zl+r )
f{uy’ —}dx>uf y— —2—Fy dx
0 0

 (ax + b)?
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which gives the inequality of Theorem 1i.e

1
[2
[ {o
0

which completes the proof of Theorem 1.

yZ

Y lixso
(ax+b)2} x>

§5: In this article we prove Theorem 2.
This inequality is also proved by using "Hilbert’s invariant integral’.

y2

Nty YT

Here we take F(x,y,y)—zy D (5.1)
Then Euler’s equation (1.2) becomes 2y

x(1-x)

. . T 2y _

which gives y'" + D - 0
ie x(1—x)y" +2y=0 (5.2)
where the initial conditions arey,=0,y; =0
lety = ax(x — 1) theny' = a(2x — 1),y" = 2a
then (5.2) has solutions Y = ax(x — 1) (5.3)

Satisfying the initial conditions whatever be o.lf E be a extremal passing through the end
points(0,0)and (1,0) then E is of the from Y = ax(x — 1).By varying a we can define a field round any

particular extremal.

YZ

11
](E)zfo {Eyz_—x(l—x)}dx

1
1® = [ Gtater- - L

1

](E)=azf0

= a2f01(3x2 —3x+§)dx = a? (1—%+§) =0
So J(E) =0 foralla. (5.4)
From §1 we have

J(©)—J(E) =$€(xy,p,y)dx using(1.4)

The integrals are taken along the curve C.

Where €(x,y,p,¥") = F(x,y,y) —F(x,y,p) — (' —p)E(x,y,p)

{ax(x - 1)}2} .

{% (4x? —4x+ 1) + x(x — 1)}dx

using (1.5)
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Herey = ax(x —1) theny' =p=aRx—1) = xl(ﬁi)y (5.5)
] _l 12 _ y2 _
From (5.1) F(x,y,y)—zy o x) =y ,s0F, =p (5.6)
_ 1, ¥, (1, y2 \_ 1/ 1-2x 2 y?
Now F pr - Zp x(1-x) pm = (Zp + x(1—x)) - { (x(l x)y ) + x(1-x)
using (5.5)

_ 2y2%x(1—x)+(1-2x)%y?

{ 2x2(1-x)2 } (5.7)
Now (F - pr)dx + FE,dy

_2y*x(1-x)+(1-2x)y” 1-2x .

{ 222 (1x)? }dx + P ydy using(5.5)and (5.6)
_ _y_2 2x(1-x)+(1-2x)2 1-2x
- 2 { 2x?(1-x)? }d +x(1—x)y dy
_ y_2 x(1-x)d(1-2x)+(1-2x)d (x(1-x)) 1-2x
T2 { x2(1-x)? }+ 2x(1-x) 2y dy
_ 2 1-2x 1-2x 2
=Y d {Zx(l—x)} + 2x(1-x) d(y )
_ S (y*a-2x)
=d { 2x(1-x) }
= i i _(y’(-20)
= dW , a perfect differential, where W—{ 2x(1_x)} (5.8)
Again from (1.9) we have
€, y,p,y)=F(x,y.y)—F(x,yp)— ' —p)E(xy,p) (1.9)
_l.on2__ 2 o .
=3y x(1—x) p +—= x(1 3 &' —pp using ((5.5) and (5.6)
= %(y’ —p)? >0,unless y =p (5.9)

So from (5.9) using (5.1), (1.8) and (5.4)

we get f {1 "2 — b x)}dx > 0 from which we get our required integral inequality

2
Jy 2= dx < 3f y"%dx (5.10)

0 x(1-x)
d 1-2
y’=p=£ py— y using (5.5)

dy _ 1-2x _ 1-x—x

y - x(1-x) - x(1-x)
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Solving we get
Logy =logx +log (1 —x)+ log c where c is arbitrary constants.
So Using (5.9) vy = cx (1 —x) gives the equality of (5.10).
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