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ABSTRACT— _
In the book “Inequalities” by / ; \ <
Hardy, Little wood and | (f y'2dx)?
Polyathe following inequality ;. 0

[chapter VII ,Theorem 259] has i \ \ \ \ *° b

been proved. ) i e g < 4--[ yzdxf y”zdx’
If yand y' are in L2(0, ‘ o 5
oo)then

unlessy = AY(Bx), where A, B

K / are constant and
when there is equality.

In this paper we extend this inequality into an integral inequality involving third order
derivative of y.

Y = e_gsin (xsiny —y) (y = g),
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$1INTRODUCTION:

In their book 'Inequalities 'Hardy, Little wood and Polya have proved the following
inequality (1.1) [ chapter VII, Theorem 259 ] involving second order derivative of y :

If y and y" are in L?2(0, o) then

(foooy’zdx)2 < 4f0°° y2dx fowy”zdx, ..................................................... (1.1)unless
Y =AY (BX), oeoreerereieie et estss s esaesssba st sesans e (1.2)

where A and B are constants and

Y = e_gsin (xsiny —y) (y = g), ................................................. (1.3)

when there is equality.
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This inequality has been proved with the help of another inequality[ 2, chapter VII, The-
orem 260 ] which is as follows :

If y and y" are in L?(0, o) then
L G G A T 2 (1.4)

UNIESS Y = AY ettt (1.5)

when there is equality.

Several proofs of (1.4) are given in the book [ 2, chapter VII, Theorem 260 ] to illustrate
differences of method. The second proof is given by reducing (1.4) to dependence upon an
identity.

In this paper we extend the inequality of (1.1) to an integral inequality where third
order derivative of functions are involved. We also extend the inequality of (1.4) to an integral
inequality involving third order derivative. With other conditions we take the conditiony’(0) =
0 for these extensions. The extension of (1.1) is given in Theorem 1 which is statedbelow:

rnr

Theorem 1: If y, y""" and any one of y' or y' are in L?(0, ©) and y’(0) =0 then
(Jy y2dx)(Jy y""?dx) > (J, y'?dx)([, y''? dx)....... (1.6)

The extension of (1.4) is given in Theorem 2 which is stated below:
Theorem 2: If y, y'"" and any one of ¥’ or y'" are in L?(0, o) and y’(0) = 0 then fooo(y2 —y'2 -
VAR SR VAECD 17 £ | O (1.6)

Theorem 2 is proved in §2 by reducing (1.7) to dependence upon an identity [ 2, chapter
VII, Theorem 260 ].

In §3 first we prove Theorem 1 using Theorem 2. An alternative proof of Theorem 1 which
is independent of Theorem 2 is givenlater.

Several examples of both Theorem 1 and Theorem 2 are given in §4.

In §5 we discuss the corrosponding theorems for complex valued functions in [0, e=) and
also for real valued functions in (—oo, o0).

§2In this article we prove the Theorem 2.
The proof of Theorem 2:

Let Jo = f;oyzdx,jl = f;oy’zdx,jz = foooy”zdx, and J3 = f;oy”’zdxwhere Jo, J3 are finite
and any one of J; or J, are finite.

If Jo, J,and Jsare finite we can show Jjis finite in the same way that Hardy, Littlewood and
Polya have done in the proof of (1.4) [ 2, chapter VII, Theorem260]
Now we assume Jo, J1, Jzare finite and we show Jis finite.

We have
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X 144 14 144 X 14 224
Jo ¥'Pdx =y'y" |5 =[5 ¥V dX e (2.1)

Since y’ and y'"" are in L?(0, o), f;(y’y”’dx tends to a finite limit as X tends to oo. If

Joi.e. f;o y''2dx were infinite.y’y’’ (X)would tend to o as X tends to oo. But,
yIZ — 2fy'y”dx,

I o1

which gives if y'y"’ is infinite then y'? is infinite which contradicts the convergence of J;.
Hencel,is finite.

Therefore, under the given conditions Jo, J1, J2, J3 are finite.

Now

X
f (2 =y2 =y +y"D) - +y +y" +y")]dx

x 0
= _2-[(; (yIZ + yIIZ + yyl + yyll + yylll + ylyll + nyIII + y//y///)dx

X
= _Zf [(y +yl +y//)(y/ +y// + yu/) _y/y/l]dx

? x

= —fo dy +y' +y")? +fo d(y")?

= -0 +y' +y"0 + ¥
= - +y' +y"?O+ G +y" +y")*0) + y?(X) - y?(0) (2.2)
Now Jo, J1 J2, Js being finite, (y + y' + y")?(X) and y'*(X) tend to zero as X tends to infinity.

When X — oo, (2.2) becomes
f [(yz _ yIZ _ yuz + yIIIZ) _ (y + yI + yll + yIII)Z]dx
0

=W+ Y +Y)2(0) = Y 2(0) e (2.3)
We apply the condition y’(0) = 0in (2.3) and get

f (yZ _ yIZ _ yIIZ + yIIIZ)dx
0
= [y(0) +y"(0)]? + fo +y' +y" +y")dxe. (2.4)

Since all the terms in the R.H.S of (2.4) arepositive,

f G2 —y?—y" +y"")dx >0
0

which is the required integral inequality(1.7).
Equality occurs in (1.7) when

Y(0) + Y (0) = 0ot (2.5)
And
VHY Y Y = 0 (2.6)
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Solving (2.6) we get three linearly independent solutions of the form y; = e *,y, =
cosx and y3 = sinx from which only e ¥ is in L?(0, o), but for y = e™* the equation (2.5) and
y'(0) = 0 are not satisfied. So under the given conditions strict inequality follows in (1.7).

§3 In this article we prove Theorem 1 in different ways.

The proof of Theorem 1 :

In order to deduce Theorem 1 from Theorem 2 ,we apply Theorem 2 to z(x)instead of
y(x), where z(x) = y (%), p is a positive quantity.

Then (1.7) becomes

f(zz —z?=72"2+72")dx > 0. cee e e e (3.1)
0

For z(x) =y (f)

P
Z'(x) = G)y' C—)) z"(x) = (/%) y" C—)) z"(x) = (/%) y" C—))

Then (3.1) becomes

fow {péy2 (%) —pty'? (%) — p?y'"? (%) + y'""2 (%)} Ax > 0o, (3.2)

Let % = t, then (3.2) becomes

fow{péyz(t) —p*y"2(t) — p2y""?(t) + y""?(O)}pdt > 0. (3.3)

Now p being positive,

po [ yr(®)dt — p* 7y 2 (O)dt — p? [, y"2(Odt + [ y""2(E)dt > 0 ... e . (34)Which
gives
Since (3.5) is true for any positive quantity p, we now take p = j—3

2

i.e.p? = jiand we get from (3.5)

2

3 2
]_33]0 —]%]1 _;_3]2 +/3>0
2 2 2
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B3
=)o == >0
2 2

= J3Jo— J2J1 >0
2

As]—32 > 0.

I3
So we have
JoJs > Ji), = fooo y2dx fooo y""%dx > fooo y'?dx fooo y""2dxwhich is the required integral inequality (1.6).
Alternative proof ofTheorem 1 :
let] = [, yy'dxand H = [ y'y'"dx.
Now we have

X n ! X !
Jo yy"dx=yy'I§ = 3 ¥PAX (3.6)

As X — o we apply the convergence of J,, J; and further apply the given condition y’(0) = 0 and
get from (3.6)

x

Equality occurs wheny = De™,......cccciiicicceieieennn.(3.10)
where D is any arbitrary constant.
Applying Cauchy-Schwarz’s inequality we get
H? < J1J3 e e et e e e et e e e et e e 22 (3011)
Equality occurs wheny = De ™ ....cccocciieeeiecineenn.(3.12)
where D is an arbitrary constant.
Multiplying respective sides of (3.9) and (3.11) we get

J 02 G 15 £ Y L (3.13)
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equality occurs when y = De ™ ™ ...ccvvvvcvieeieeieeeeeeeennn..(3.14)
Using (3.7), (3.8) and (3.13) we get

J2JZ2 < JoJ2J 13 cenerimsiiinsisessnsssasneneenns (3.15)

We note that for y = e™* the equation (3.7) and (3.8) are not true as the given condition y’(0) = 0
is not satisfied. Hence under the given conditions strict inequality follows in (3.15).

So we have from (3.15)

JsJo > 1)z =>fy2dxf y'"2dx > f y’zdxf y'"?dx
0 0 0 0

which is the required integral inequality (1.6).
§4 In the article we verify our inequalities (1.6) and (1.7) by taking different examples.
We will explain Example 1 in detail and mention other some examples at the end.

Example 1: Let y = e VZsin (g+ %) X € [0,00) i (4.1)

Differentiating (4.1) twice and thrice we get

Y V2P Y = 0o (4.2)
A Y L L U (4.3)
respectively.

After conclusion it can be shown that y, y’, y’’, y'"" all are in L?(0, o)and y’(0) = 0.
Now we consider the expression

X

f(y2 — Y=y +y""Hdx
0

Using (4.3) the above expression

X
= f{y2 —y"? =y + (V2y" +y)Hdx
(0]

X X
= f(y2 +y"?)dx + \/Ef d(y'?)
(0] (0]

= [ O% + "D dx + VZIy'2(X) = Y2 (0] (4.4)

Now since y' isin L?(0, ) and y’(0) = 0 then as X tends to o (4.4) becomes
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X 14 144 nr X 144
Jo 2 =y? =y +y"dx = [ (y* +y"?)dx > 0..coeeveereee. (4.5)

As y is not identically zero.
Hence (1.7) is verified.
Now we consider the expression

X X
f yde f yandx
0 0

Using (4.2) and (4.3) the above expression

X X
= [ +vayyax [ 2y +yy2ax
0 0

= f;((y”z +2V2y"y" + 2y'?)dx f;((Zy”z +2V2y"y" + y'dx.............. (4.6)
Now

X 14 144 14 14
2[5y y"dx = y2(X) = Y2 (0) e (4.7)

Using the given conditions as X tends to oo the R.H.S. of (4.7) tends to zero.
Now when X tends to oo (4.6) becomes

f yde f ymzdx
0 0

= f (y"? + 2y’2)dxf Qy"? + y'?)dx
0 0

= 2(f0°°y”2dx)2 + f;oy”zdx foooy’zdx + 4f0°°y’2dx f;oy”zdx + Z(Ify’zdx)z...(4.8)

Now (4.8) gives

(), )= (e (] )

asy is not identically zero.
Hence (1.6) is verified.
Other some examples are:

2 = xZ (—— —) € [0,
y =e Vzcos + x € [0, )
: < ) [ )
2S8S1 )
Y 6 24/3
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4 v <” ad ) € [0, 00)
: =e cos|————= x , 00
y 2 >
5. y= e_%ﬁcos (E + x) x € [0,0)
3

Note: We note thatfory =e™*, y, y', ¥, y'"’ € L?(0,) and equality occurs in both (1.6)
and (1.7) but the given condition y’(0) = 0 does not hold.

§5.Remark 1: We observe that if f is a complex valued functioni.e.f = f; + if,, where f; and
fare the real and imaginary part of frespectively, then |f|2 = f1% + f2%.  f', f"andf’" can
be expressed in the similar way.

We now apply Theorem 2 separately on both real and imaginary parts of f and its
derivatives and then adding the two results we get the following theorem corresponding to
Theorem 2for a complex valued function f.

Theorem 4: For a complex valued function f, if|f|, |f'’| and any one of |f’]| or |f"'| are in
L?(0,00) and f’(0) = 0 then

JAFD = LOAUFIZ = 1 12 = 1712+ 1123 > O (5.1)

Similarly we have Theorem 3 for complex valued function f, which is the theorem
corresponding to Theorem 1.

Theorem 3: For a complex valued function f, if |f], |f'"'| and any one of |f’]| or |f"'| are in
L?(0,00) and f’(0) = 0 then

21 12dx) (S 17 12dx) > (02 1F12d2) (S 17 12d2) e (5.2)

We can prove Theorem 3 from Theorem 4 in the same way as Theorem 1 is proved
from Theorem 2.

Remark 2: It is interesting to observe that when the inequality is considered over the interval
(—o0, ) we do not require the condition y’(0) = 0 for corresponding theorems of Theorem 1
and Theorem 2. The corresponding Theorem 1 and Theorem 2 are Theorem 5 and theorem 6
respectively which are as follows:

rr

Theorem 5: If y, y'"" and any one of y’ or y’’ are in L?(—o0,0) then

(U2 y2dx) ([ y'"2dx) > (J© y"2dx)(J° y""2dx)eeeeeeenn: (5.3)
UNIESS ¥ = DY e ettt e e e e (5.4)
where D is an arbitrary constant and

Y = e e (5.5)

when there is equality.
Theorem 6: If y, y'"" and any one of y’ or y’’ are in L?(—o0,0) then

L R VAL Ve L | SO (5.6)

UNIESS ¥ = DY e ettt e e e e (5.7)
where D is an arbitrary constant.
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Proof of Theorem 6: Proceeding in the same way as the proof of Theorem 2 on
[—X, X]we have

X
f [(yZ _ yIZ _ yuz + yIIIZ) _ (y + yI + yll + yIII)Z]dx
-X

==+ Y V) Y P s (5.8)

Now from the given conditions, (y + y’ +y")2(X), y'2(X) and (y + ¥’ + y")2(—X), y'2(—X)
tends to zero as X tends to infinity.
Hence when X — oo we have

f (yz _ yIZ _ yuz + yIIIZ)dx

= f_ww(y VA o AR S VAL L (5.9)

So we have
f (yz _ yIZ _ yuz + yIIIZ)dx > 0

which is the required inequality (5.6).
Equality occurs wheny +y' + y" + y""" = 0, which is the equation (2.6)

Following the solution of (2.6) in §2 we get the only solution in L?2(—o0,0) as y = e~
which gives the equality case here.

Theorem 5 can also be proved from Theorem 6 in the similar way as Theorem 1 is
proved from Theorem 2.

X
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