REVIEW OF RESEARCH

ISSN: 2249-894X
IMPACT FACTOR: 5.2331(UIF)
VOLUME - 7 | ISSUE - 4 | JANUARY - 2018
UGC APPROVED JOURNAL NO. 48514

ON SOME INTEGRAL INEQUALITIES INVOLVING THIRD ORDER DERIVATIVE

Dr. Santanu Bhunia ${ }^{1}$ and Moumita Bhattacharyya ${ }^{2}$
${ }^{1}$ Assistant professor in Mathematics, Fakir Chand College, Diamond Harbour, South 24-Parganas, West Bengal, India.
${ }^{2}$ Department of Pure Mathematics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, India.

ABSTRACT-
In the book "Inequalities" by Hardy, Little wood and Polyathe following inequality [chapter VII ,Theorem 259] has been proved.
If y and $y^{\prime \prime}$ are in $L^{2}(0$, $\infty)$ then

$$
\begin{aligned}
& \left(\int_{0}^{\infty} y^{\prime 2} d x\right)^{2} \\
& <4 \int_{0}^{\infty} y^{2} d x \int_{0}^{\infty} y^{\prime \prime 2} d x
\end{aligned}
$$

unlessy $=A Y(B x)$, where A, B are constant and

$$
Y=e^{-\frac{x}{2}} \sin (x \sin \gamma-\gamma)\left(\gamma=\frac{\pi}{3}\right)
$$

when there is equality.
In this paper we extend this inequality into an integral inequality involving third order derivative of y.

KEY WORDS: Integral inequality, Identity.

2010 Mathematics Subject Classification: 34A40
§1INTRODUCTION:
In their book 'Inequalities 'Hardy, Little wood and Polya have proved the following inequality (1.1) [chapter VII, Theorem 259] involving second order derivative of y :

If y and $y^{\prime \prime}$ are in $L^{2}(0, \infty)$ then
$\left(\int_{0}^{\infty} y^{\prime 2} d x\right)^{2}<4 \int_{0}^{\infty} y^{2} d x \int_{0}^{\infty} y^{\prime \prime 2} d x$ (1.1)unless
$y=A Y(B x)$, \qquad
where A and B are constants and
$Y=e^{-\frac{x}{2}} \sin (x \sin \gamma-\gamma)\left(\gamma=\frac{\pi}{3}\right)$,
when there is equality.

This inequality has been proved with the help of another inequality[2 , chapter VII, Theorem 260] which is as follows:

If y and $y^{\prime \prime}$ are in $L^{2}(0, \infty)$ then
$\int_{0}^{\infty}\left(y^{2}-y^{\prime 2}+y^{\prime \prime 2}\right) d x>0$,
unless $y=A Y$
when there is equality.
Several proofs of (1.4) are given in the book [2, chapter VII, Theorem 260] to illustrate differences of method. The second proof is given by reducing (1.4) to dependence upon an identity.

In this paper we extend the inequality of (1.1) to an integral inequality where third order derivative of functions are involved. We also extend the inequality of (1.4) to an integral inequality involving third order derivative. With other conditions we take the condition $y^{\prime}(0)=$ 0 for these extensions. The extension of (1.1) is given in Theorem 1 which is statedbelow:

Theorem 1: If $y, y^{\prime \prime \prime}$ and any one of y^{\prime} or $y^{\prime \prime}$ are in $L^{2}(0, \infty)$ and $y^{\prime}(0)=0$ then $\left(\int_{0}^{\infty} y^{2} d x\right)\left(\int_{0}^{\infty} y^{\prime \prime \prime 2} d x\right)>\left(\int_{0}^{\infty} y^{\prime 2} d x\right)\left(\int_{0}^{\infty} y^{\prime \prime 2} d x\right) \ldots \ldots .$. (1.6)

The extension of (1.4) is given in Theorem 2 which is stated below:
Theorem 2: If $y, y^{\prime \prime \prime}$ and any one of y^{\prime} or $y^{\prime \prime}$ are in $L^{2}(0, \infty)$ and $y^{\prime}(0)=0$ then $\int_{0}^{\infty}\left(y^{2}-y^{\prime 2}-\right.$ $\left.y^{\prime \prime 2}+y^{\prime \prime \prime 2}\right) d x>0$ \qquad
Theorem 2 is proved in $\S 2$ by reducing (1.7) to dependence upon an identity [2, chapter VII, Theorem 260].

In $\S 3$ first we prove Theorem 1 using Theorem 2. An alternative proof of Theorem 1 which is independent of Theorem 2 is givenlater.

Several examples of both Theorem 1 and Theorem 2 are given in $\S 4$.
In $\S 5$ we discuss the corrosponding theorems for complex valued functions in $[0, \infty)$ and also for real valued functions in $(-\infty, \infty)$.
§2In this article we prove the Theorem 2.

The proof of Theorem 2:

Let $J_{0}=\int_{0}^{\infty} y^{2} d x, J_{1}=\int_{0}^{\infty} y^{\prime 2} d x, J_{2}=\int_{0}^{\infty} y^{\prime \prime 2} d x$, and $J_{3}=\int_{0}^{\infty} y^{\prime \prime \prime 2} d x$ where J_{0}, J_{3} are finite and any one of J_{1} or J_{2} are finite.

If J_{0}, J_{2} and J_{3} are finite we can show J_{1} is finite in the same way that Hardy, Littlewood and Polya have done in the proof of (1.4) [2 , chapter VII, Theorem260] Now we assume J_{0}, J_{1}, J_{3} are finite and we show J_{2} is finite.

We have

Available online at www.lbp.world
$\int_{0}^{X} y^{\prime \prime 2} d x=\left.y^{\prime} y^{\prime \prime}\right|_{0} ^{X}-\int_{0}^{X} y^{\prime} y^{\prime \prime \prime} d x$..
Since y^{\prime} and $y^{\prime \prime \prime}$ are in $L^{2}(0, \infty), \int_{0}^{X} y^{\prime} y^{\prime \prime \prime} d x$ tends to a finite limit as X tends to ∞. If J_{2} i.e. $\int_{0}^{\infty} y^{\prime \prime 2} d x$ were infinite. $y^{\prime} y^{\prime \prime}(X)$ would tend to ∞ as X tends to ∞. But,

$$
y^{\prime 2}=2 \int y^{\prime} y^{\prime \prime} d x
$$

which gives if $y^{\prime} y^{\prime \prime}$ is infinite then $y^{\prime 2}$ is infinite which contradicts the convergence of J_{1}. Hence J_{2} is finite.
Therefore, under the given conditions $J_{0}, J_{1}, J_{2}, J_{3}$ are finite.
Now

$$
\begin{align*}
& \quad \int_{0}^{X}\left[\left(y^{2}-y^{\prime 2}-y^{\prime \prime 2}+y^{\prime \prime \prime 2}\right)-\left(y+y^{\prime}+y^{\prime \prime}+y^{\prime \prime \prime}\right)^{2}\right] d x \\
& =-2 \int_{0}^{X}\left(y^{\prime 2}+y^{\prime \prime 2}+y y^{\prime}+y y^{\prime \prime}+y y^{\prime \prime \prime}+y^{\prime} y^{\prime \prime}+y^{\prime} y^{\prime \prime \prime}+y^{\prime \prime} y^{\prime \prime \prime}\right) d x \\
& =-2 \int_{0}^{X}\left[\left(y+y^{\prime}+y^{\prime \prime}\right)\left(y^{\prime}+y^{\prime \prime}+y^{\prime \prime \prime}\right)-y^{\prime} y^{\prime \prime}\right] d x \\
& =-\int_{0}^{X} d\left(y+y^{\prime}+y^{\prime \prime}\right)^{2}+\int_{0}^{X} d\left(y^{\prime}\right)^{2} \\
& =-\left.\left(y+y^{\prime}+y^{\prime \prime}\right)^{2}\right|_{0} ^{X}+\left.y^{\prime 2}\right|_{0} ^{X} \\
& =-\left(y+y^{\prime}+y^{\prime \prime}\right)^{2}(X)+\left(y+y^{\prime}+y^{\prime \prime}\right)^{2}(0)+y^{\prime 2}(X)-y^{\prime 2}(0) \tag{2.2}
\end{align*}
$$

Now $J_{0}, J_{1}, J_{2}, J_{3}$ being finite, $\left(y+y^{\prime}+y^{\prime \prime}\right)^{2}(X)$ and $y^{\prime 2}(X)$ tend to zero as X tends to infinity.
When $X \rightarrow \infty$, (2.2) becomes

$$
\begin{equation*}
\int_{0}^{\infty}\left[\left(y^{2}-y^{\prime 2}-y^{\prime \prime 2}+y^{\prime \prime \prime 2}\right)-\left(y+y^{\prime}+y^{\prime \prime}+y^{\prime \prime \prime}\right)^{2}\right] d x \tag{2.3}
\end{equation*}
$$

$=\left(y+y^{\prime}+y^{\prime \prime}\right)^{2}(0)-y^{\prime 2}(0)$
We apply the condition $y^{\prime}(0)=0$ in (2.3) and get

$$
\begin{equation*}
\int_{0}^{\infty}\left(y^{2}-y^{\prime 2}-y^{\prime \prime 2}+y^{\prime \prime \prime 2}\right) d x \tag{2.4}
\end{equation*}
$$

$=\left[y(0)+y^{\prime \prime}(0)\right]^{2}+\int_{0}^{\infty}\left(y+y^{\prime}+y^{\prime \prime}+y^{\prime \prime \prime}\right)^{2} d x$.
Since all the terms in the R.H.S of (2.4) arepositive,

$$
\int_{0}^{\infty}\left(y^{2}-y^{\prime 2}-y^{\prime \prime 2}+y^{\prime \prime \prime 2}\right) d x>0
$$

which is the required integral inequality(1.7).
Equality occurs in (1.7) when
$y(0)+y^{\prime \prime}(0)=0$
And
$y+y^{\prime}+y^{\prime \prime}+y^{\prime \prime \prime}=0$. \qquad

Available online at www.lbp.world

Solving (2.6) we get three linearly independent solutions of the form $y_{1}=e^{-x}, y_{2}=$ $\cos x$ and $y_{3}=\sin x$ from which only e^{-x} is in $L^{2}(0, \infty)$, but for $y=e^{-x}$ the equation (2.5) and $y^{\prime}(0)=0$ are not satisfied. So under the given conditions strict inequality follows in (1.7).
§3 In this article we prove Theorem 1 in different ways.
The proof of Theorem 1 :
In order to deduce Theorem 1 from Theorem 2 , we apply Theorem 2 to $z(x)$ instead of $y(x)$, where $z(x)=y\left(\frac{x}{\rho}\right), \rho$ is a positive quantity.

Then (1.7) becomes

$$
\begin{equation*}
\int_{0}^{\infty}\left(z^{2}-z^{\prime 2}-z^{\prime \prime 2}+z^{\prime \prime \prime 2}\right) d x>0 \tag{3.1}
\end{equation*}
$$

For $z(x)=y\left(\frac{x}{\rho}\right)$

$$
z^{\prime}(x)=\left(\frac{1}{\rho}\right) y^{\prime}\left(\frac{x}{\rho}\right), \quad z^{\prime \prime}(x)=\left(\frac{1}{\rho^{2}}\right) y^{\prime \prime}\left(\frac{x}{\rho}\right), \quad z^{\prime \prime \prime}(x)=\left(\frac{1}{\rho^{3}}\right) y^{\prime \prime \prime}\left(\frac{x}{\rho}\right)
$$

Then (3.1) becomes
$\int_{0}^{\infty}\left\{\rho^{6} y^{2}\left(\frac{x}{\rho}\right)-\rho^{4} y^{\prime 2}\left(\frac{x}{\rho}\right)-\rho^{2} y^{\prime \prime 2}\left(\frac{x}{\rho}\right)+y^{\prime \prime \prime 2}\left(\frac{x}{\rho}\right)\right\} d x>0$.
Let $\frac{x}{\rho}=t$, then (3.2) becomes
$\int_{0}^{\infty}\left\{\rho^{6} y^{2}(t)-\rho^{4} y^{\prime 2}(t)-\rho^{2} y^{\prime \prime 2}(t)+y^{\prime \prime \prime 2}(t)\right\} \rho d t>0$.
Now ρ being positive,
$\rho^{6} \int_{0}^{\infty} y^{2}(t) d t-\rho^{4} \int_{0}^{\infty} y^{\prime 2}(t) d t-\rho^{2} \int_{0}^{\infty} y^{\prime \prime 2}(t) d t+\int_{0}^{\infty} y^{\prime \prime \prime 2}(t) d t>0$. \qquad (3.4)which gives

$$
\begin{equation*}
\rho^{6} J_{0}-\rho^{4} J_{1}-\rho^{2} J_{2}+J_{3}>0 \tag{3.5}
\end{equation*}
$$

Since (3.5) is true for any positive quantity ρ, we now take $\rho=\sqrt{\frac{J_{3}}{J_{2}}}$
i.e. $\rho^{2}=\frac{J_{3}}{J_{2}}$ and we get from (3.5)

$$
\frac{J_{3}^{3}}{J_{2}^{3}} J_{0}-\frac{J_{3}^{2}}{J_{2}^{2}} J_{1}-\frac{J_{3}}{J_{2}} J_{2}+J_{3}>0
$$

Available online at www.lbp.world
$\Rightarrow \frac{J_{3}^{3}}{J_{2}^{3}} J_{0}-\frac{J_{3}^{2}}{J_{2}^{2}} J_{1}>0$
$\Rightarrow J_{3} J_{0}-J_{2} J_{1}>0$
$A s_{J_{2}^{2}}^{J_{3}^{2}}>0$.
So we have
$J_{0} J_{3}>J_{1} J_{2} \Rightarrow \int_{0}^{\infty} y^{2} d x \int_{0}^{\infty} y^{\prime \prime \prime 2} d x>\int_{0}^{\infty} y^{\prime 2} d x \int_{0}^{\infty} y^{\prime \prime 2} d x$ which is the required integral inequality (1.6).

Alternative proof ofTheorem 1 :
Let $J=\int_{0}^{\infty} y y^{\prime} d x$ and $H=\int_{0}^{\infty} y^{\prime} y^{\prime \prime \prime} d x$.
Now we have
$\int_{0}^{X} y y^{\prime \prime} d x=\left.y y^{\prime}\right|_{0} ^{X}-\int_{0}^{X} y^{\prime 2} d x$
As $X \rightarrow \infty$ we apply the convergence of J_{0}, J_{1} and further apply the given condition $y^{\prime}(0)=0$ and get from (3.6)
$J=-J_{1}$
Proceeding in a similar way for y^{\prime} and $y^{\prime \prime \prime}$ we get
$H=-J_{2}$
Applying Cauchy-Schwarz'sine quality we get
$J^{2} \leq J_{0} J_{2}$
Equality occurs when $y=D e^{-x}$,
where D is any arbitrary constant.
Applying Cauchy-Schwarz's inequality we get

$$
\begin{equation*}
H^{2} \leq J_{1} J_{3} \tag{3.11}
\end{equation*}
$$

Equality occurs when $y=D e^{-x}$
where D is an arbitrary constant.
Multiplying respective sides of (3.9) and (3.11) we get
$J^{2} H^{2} \leq J_{0} J_{2} J_{1} J_{3}$.

Available online at www.lbp.world
equality occurs when $y=D e^{-x}$.
Using (3.7), (3.8) and (3.13) we get
$J_{1}^{2} J_{2}^{2}<J_{0} J_{2} J_{1} J_{3}$.
We note that for $y=e^{-x}$ the equation (3.7) and (3.8) are not true as the given condition $y^{\prime}(0)=0$ is not satisfied. Hence under the given conditions strict inequality follows in (3.15).

So we have from (3.15)

$$
J_{3} J_{0}>J_{1} J_{2} \Rightarrow \int_{0}^{\infty} y^{2} d x \int_{0}^{\infty} y^{\prime \prime \prime 2} d x>\int_{0}^{\infty} y^{\prime 2} d x \int_{0}^{\infty} y^{\prime \prime 2} d x
$$

which is the required integral inequality (1.6).
$\S 4$ In the article we verify our inequalities (1.6) and (1.7) by taking different examples. We will explain Example 1 in detail and mention other some examples at the end.

Example 1: Let $y=e^{-\frac{x}{\sqrt{2}}} \sin \left(\frac{\pi}{4}+\frac{x}{\sqrt{2}}\right) \quad x \in[0, \infty)$
Differentiating (4.1) twice and thrice we get
$y^{\prime \prime}+\sqrt{2} y^{\prime}+y=0$. \qquad
$y^{\prime \prime \prime}+\sqrt{2} y^{\prime \prime}+y^{\prime}=0$. \qquad
respectively.
After conclusion it can be shown that $y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}$ all are in $L^{2}(0, \infty)$ and $y^{\prime}(0)=0$.
Now we consider the expression

$$
\int_{0}^{X}\left(y^{2}-y^{\prime 2}-y^{\prime \prime 2}+y^{\prime \prime \prime 2}\right) d x
$$

Using (4.3) the above expression

$$
=\int_{0}^{x}\left\{y^{2}-y^{\prime 2}-y^{\prime \prime 2}+\left(\sqrt{2} y^{\prime \prime}+y^{\prime}\right)^{2}\right\} d x
$$

$$
\begin{equation*}
=\int_{0}^{X}\left(y^{2}+y^{\prime 2}\right) d x+\sqrt{2} \int_{0}^{X} d\left(y^{\prime 2}\right) \tag{4.4}
\end{equation*}
$$

$=\int_{0}^{X}\left(y^{2}+y^{\prime \prime 2}\right) d x+\sqrt{2}\left[y^{\prime 2}(X)-y^{\prime 2}(0)\right]$
Now since y^{\prime} is in $L^{2}(0, \infty)$ and $y^{\prime}(0)=0$ then as X tends to ∞ (4.4) becomes

Available online at www.lbp.world
$\int_{0}^{X}\left(y^{2}-y^{\prime 2}-y^{\prime \prime 2}+y^{\prime \prime \prime 2}\right) d x=\int_{0}^{X}\left(y^{2}+y^{\prime \prime 2}\right) d x>0$.
As y is not identically zero.
Hence (1.7) is verified.
Now we consider the expression

$$
\int_{0}^{X} y^{2} d x \int_{0}^{X} y^{\prime \prime \prime 2} d x
$$

Using (4.2) and (4.3) the above expression

$$
\begin{array}{r}
=\int_{0}^{X}\left(y^{\prime \prime}+\sqrt{2} y^{\prime}\right)^{2} d x \int_{0}^{X}\left(\sqrt{2} y^{\prime \prime}+y^{\prime}\right)^{2} d x \\
=\int_{0}^{X}\left(y^{\prime \prime 2}+2 \sqrt{2} y^{\prime \prime} y^{\prime}+2 y^{\prime 2}\right) d x \int_{0}^{X}\left(2 y^{\prime \prime 2}+2 \sqrt{2} y^{\prime \prime} y^{\prime}+y^{\prime 2}\right) d x \ldots . . \tag{4.6}
\end{array}
$$

Now
$2 \int_{0}^{X} y^{\prime} y^{\prime \prime} d x=y^{\prime 2}(X)-y^{\prime 2}(0)$

Using the given conditions as X tends to ∞ the R.H.S. of (4.7) tends to zero.
Now when X tends to ∞ (4.6) becomes
$\int_{0}^{\infty} y^{2} d x \int_{0}^{\infty} y^{\prime \prime \prime 2} d x$
$=\int_{0}^{\infty}\left(y^{\prime \prime 2}+2 y^{\prime 2}\right) d x \int_{0}^{\infty}\left(2 y^{\prime \prime 2}+y^{\prime 2}\right) d x$
$=2\left(\int_{0}^{\infty} y^{\prime \prime 2} d x\right)^{2}+\int_{0}^{\infty} y^{\prime \prime 2} d x \int_{0}^{\infty} y^{\prime 2} d x+4 \int_{0}^{\infty} y^{\prime 2} d x \int_{0}^{\infty} y^{\prime \prime 2} d x+2\left(\int_{0}^{\infty} y^{\prime 2} d x\right)^{2}$.
Now (4.8) gives

$$
\left(\int_{0}^{\infty} y^{2} d x\right)\left(\int_{0}^{\infty} y^{\prime \prime \prime 2} d x\right)>\left(\int_{0}^{\infty} y^{\prime 2} d x\right)\left(\int_{0}^{\infty} y^{\prime \prime 2} d x\right)
$$

asy is not identically zero.
Hence (1.6) is verified.
Other some examples are:

$$
\begin{array}{ll}
\text { 2. } y=e^{-\frac{x}{\sqrt{2}}} \cos \left(-\frac{\pi}{4}+\frac{x}{\sqrt{2}}\right) & x \in[0, \infty) \\
\text { 3. } y=e^{-\frac{x}{2}} \sin \left(\frac{\pi}{6}+\frac{x}{2 \sqrt{3}}\right) & x \in[0, \infty)
\end{array}
$$

Available online at www.lbp.world

$$
\begin{array}{ll}
\text { 4. } y=e^{-\frac{x}{\sqrt{2}}} \cos \left(\frac{\pi}{4}-\frac{x}{\sqrt{2}}\right) & x \in[0, \infty) \\
\text { 5. } y=e^{-\frac{x}{\sqrt{3}}} \cos \left(\frac{\pi}{3}+x\right) & x \in[0, \infty)
\end{array}
$$

Note: We note that for $y=e^{-x}, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime} \in L^{2}(0, \infty)$ and equality occurs in both (1.6) and (1.7) but the given condition $y^{\prime}(0)=0$ does not hold.
$\S 5$.Remark 1: We observe that if f is a complex valued functioni.e. $f=f_{1}+i f_{2}$, where f_{1} and f_{2} are the real and imaginary part of f respectively, then $|f|^{2}=f_{1}{ }^{2}+f_{2}{ }^{2} . \quad f^{\prime}, f^{\prime \prime}$ and $f^{\prime \prime \prime}$ can be expressed in the similar way.

We now apply Theorem 2 separately on both real and imaginary parts of f and its derivatives and then adding the two results we get the following theorem corresponding to Theorem 2 for a complex valued function f.

Theorem 4: For a complex valued function f, if $|f|,\left|f^{\prime \prime \prime}\right|$ and any one of $\left|f^{\prime}\right|$ or $\left|f^{\prime \prime}\right|$ are in $L^{2}(0, \infty)$ and $f^{\prime}(0)=0$ then
$J(|f|)=\int_{0}^{\infty}\left\{|f|^{2}-\left|f^{\prime}\right|^{2}-\left|f^{\prime \prime}\right|^{2}+\left|f^{\prime \prime \prime}\right|^{2}\right\} d x>0$.
Similarly we have Theorem 3 for complex valued function f, which is the theorem corresponding to Theorem 1.

Theorem 3: For a complex valued function f, if $|f|,\left|f^{\prime \prime \prime}\right|$ and any one of $\left|f^{\prime}\right|$ or $\left|f^{\prime \prime}\right|$ are in $L^{2}(0, \infty)$ and $f^{\prime}(0)=0$ then
$\left(\int_{0}^{\infty}|f|^{2} d x\right)\left(\int_{0}^{\infty}\left|f^{\prime \prime \prime}\right|^{2} d x\right)>\left(\int_{0}^{\infty}\left|f^{\prime}\right|^{2} d x\right)\left(\int_{0}^{\infty}\left|f^{\prime \prime}\right|^{2} d x\right)$

We can prove Theorem 3 from Theorem 4 in the same way as Theorem 1 is proved from Theorem 2.

Remark 2: It is interesting to observe that when the inequality is considered over the interval $(-\infty, \infty)$ we do not require the condition $y^{\prime}(0)=0$ for corresponding theorems of Theorem 1 and Theorem 2. The corresponding Theorem 1 and Theorem 2 are Theorem 5 and theorem 6 respectively which are as follows:

Theorem 5: If $y, y^{\prime \prime \prime}$ and any one of y^{\prime} or $y^{\prime \prime}$ are in $L^{2}(-\infty, \infty)$ then
$\left(\int_{-\infty}^{\infty} y^{2} d x\right)\left(\int_{-\infty}^{\infty} y^{\prime \prime \prime 2} d x\right)>\left(\int_{-\infty}^{\infty} y^{\prime 2} d x\right)\left(\int_{-\infty}^{\infty} y^{\prime \prime 2} d x\right)$
unless $y=D Y$
where D is an arbitrary constant and
$Y=e^{-x}$
when there is equality.
Theorem 6: If $y, y^{\prime \prime \prime}$ and any one of y^{\prime} or $y^{\prime \prime}$ are in $L^{2}(-\infty, \infty)$ then
$\int_{-\infty}^{\infty}\left(y^{2}-y^{\prime 2}-y^{\prime \prime 2}+y^{\prime \prime \prime 2}\right) d x>0$.
unless $y=D Y$.
where D is an arbitrary constant.

Available online at www.lbp.world

Proof of Theorem 6: Proceeding in the same way as the proof of Theorem 2 on $[-X, X]$ we have

$$
\begin{align*}
& \int_{-X}^{X}\left[\left(y^{2}-y^{\prime 2}-y^{\prime \prime 2}+y^{\prime \prime \prime 2}\right)-\left(y+y^{\prime}+y^{\prime \prime}+y^{\prime \prime \prime}\right)^{2}\right] d x \\
& =-\left.\left(y+y^{\prime}+y^{\prime \prime}\right)^{2}\right|_{-X} ^{X}+\left.y^{\prime 2}\right|_{-x} ^{X} \ldots \ldots .(5.8) ~ \tag{5.8}
\end{align*}
$$

Now from the given conditions, $\left(y+y^{\prime}+y^{\prime \prime}\right)^{2}(X), y^{\prime 2}(X)$ and $\left(y+y^{\prime}+y^{\prime \prime}\right)^{2}(-X), y^{\prime 2}(-X)$ tends to zero as X tends to infinity.
Hence when $X \rightarrow \infty$ we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(y^{2}-y^{\prime 2}-y^{\prime \prime 2}+y^{\prime \prime \prime 2}\right) d x \tag{5.9}
\end{equation*}
$$

$=\int_{-\infty}^{\infty}\left(y+y^{\prime}+y^{\prime \prime}+y^{\prime \prime \prime}\right)^{2} d x$.

So we have

$$
\int_{-\infty}^{\infty}\left(y^{2}-y^{\prime 2}-y^{\prime \prime 2}+y^{\prime \prime \prime 2}\right) d x>0
$$

which is the required inequality (5.6).
Equality occurs when $y+y^{\prime}+y^{\prime \prime}+y^{\prime \prime \prime}=0$, which is the equation (2.6)
Following the solution of (2.6) in $\S 2$ we get the only solution in $L^{2}(-\infty, \infty)$ as $y=e^{-x}$ which gives the equality case here.

Theorem 5 can also be proved from Theorem 6 in the similar way as Theorem 1 is proved from Theorem 2.

REFERENCES

1. Dragoslav.S, Fink. A. M, Mitrinovic. D. S, Pecaric. J. Inequalities Involving Functions And Their Integrals And Derivatives.Springer,1991.
2. Hardy.G.H,Littlewood.J.E,Polya.G:Inequalities. Cambridge,At the University Press,1952.
